Investigation of Graphene Dispersion From Kelly Sideband in Stable Mode-Locked Erbium-Doped Fiber Laser by Few-Layer Graphene Saturable Absorbers

In this paper, stable passively mode-locked fiber lasers (MLFLs) constructed using graphene saturable absorbers (SAs) with different layer numbers of ~1 to ~15 have been reported. The flat linear transmission spectrum in the range from 1540 to 1580 nm without any distinct absorption peak implies tha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of lightwave technology 2015-11, Vol.33 (21), p.4406-4412
Hauptverfasser: Chen, Hou-Ren, Tsai, Chih-Ya, Chang, Ching-Yang, Lin, Kuei-Huei, Chang, Chen-Shiung, Hsieh, Wen-Feng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4412
container_issue 21
container_start_page 4406
container_title Journal of lightwave technology
container_volume 33
creator Chen, Hou-Ren
Tsai, Chih-Ya
Chang, Ching-Yang
Lin, Kuei-Huei
Chang, Chen-Shiung
Hsieh, Wen-Feng
description In this paper, stable passively mode-locked fiber lasers (MLFLs) constructed using graphene saturable absorbers (SAs) with different layer numbers of ~1 to ~15 have been reported. The flat linear transmission spectrum in the range from 1540 to 1580 nm without any distinct absorption peak implies that the graphene SAs exhibit low dispersion in this region. Therefore, stable soliton-like pulses are generated because of negative dispersion provided by the fiber laser cavity, which requires no additional single-mode fiber (SMF) for dispersion compensation. Power-dependent transmission measurements show that the saturation intensity ranges from 1.2 to 3.2 MW/cm 2 and that the modulation depth (MD) of the graphene SAs increases with the number of graphene layers. All the samples were observed to easily mode-lock the laser with a stable mode-locking state persistently operated over hours. By analyzing the soliton Kelly sidebands, we deduced the group delay dispersion (GDD) for different layers of the graphene. The calculated results show that the variation of sample GDD is within the calculation error, indicating that the GDD of graphene is small to be negligible. This result is consistent with the experimental results reported by Chang et al. [Appl. Phys. Lett. 97, 211102 (2010)] using the phase-shift method. This study demonstrates that different layers graphene SAs have different MD contributions to the generation of laser pulses with different pulse widths.
doi_str_mv 10.1109/JLT.2015.2471100
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JLT_2015_2471100</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7226784</ieee_id><sourcerecordid>1793244513</sourcerecordid><originalsourceid>FETCH-LOGICAL-c296t-255defc0aefd9515d8b8f856030c8bc8c1fa71b874c5ad3175af46c4f3794dca3</originalsourceid><addsrcrecordid>eNo9kE1PGzEQhq2qSE1p75W4-Mhlgz9j7xEBobRbcQg9r_wxBkOyXuwNVX5G_zEOQVxm9I7eeUfzIPSDkjmlpD371d3NGaFyzoSqA_IJzaiUumGM8s9oRhTnjVZMfEFfS3kkhAqh1Qz9vxleoEzx3kwxDTgFfJ3N-AAD4MtYRshlP17mtMG_Yb3e4VX0YM3gcRzwajJ2DfhP8tB0yT2Bx1fZxu2muUxjFctoIePOlFrtDi_hX9OZXRUfN1Zm2ua3kHNbUq728g0dBbMu8P29H6O_y6u7i59Nd3t9c3HeNY61i6lhUnoIjhgIvpVUem110HJBOHHaOu1oMIparYSTxnOqpAli4UTgqhXeGX6MTg-5Y07P28qg38Ti6o9mgLQtPVUtZ0JIyquVHKwup1IyhH7McWPyrqek39PvK_1-T79_p19XTg4rEQA-7IqxhdKCvwLoVoJ5</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1793244513</pqid></control><display><type>article</type><title>Investigation of Graphene Dispersion From Kelly Sideband in Stable Mode-Locked Erbium-Doped Fiber Laser by Few-Layer Graphene Saturable Absorbers</title><source>IEEE Electronic Library (IEL)</source><creator>Chen, Hou-Ren ; Tsai, Chih-Ya ; Chang, Ching-Yang ; Lin, Kuei-Huei ; Chang, Chen-Shiung ; Hsieh, Wen-Feng</creator><creatorcontrib>Chen, Hou-Ren ; Tsai, Chih-Ya ; Chang, Ching-Yang ; Lin, Kuei-Huei ; Chang, Chen-Shiung ; Hsieh, Wen-Feng</creatorcontrib><description>In this paper, stable passively mode-locked fiber lasers (MLFLs) constructed using graphene saturable absorbers (SAs) with different layer numbers of ~1 to ~15 have been reported. The flat linear transmission spectrum in the range from 1540 to 1580 nm without any distinct absorption peak implies that the graphene SAs exhibit low dispersion in this region. Therefore, stable soliton-like pulses are generated because of negative dispersion provided by the fiber laser cavity, which requires no additional single-mode fiber (SMF) for dispersion compensation. Power-dependent transmission measurements show that the saturation intensity ranges from 1.2 to 3.2 MW/cm 2 and that the modulation depth (MD) of the graphene SAs increases with the number of graphene layers. All the samples were observed to easily mode-lock the laser with a stable mode-locking state persistently operated over hours. By analyzing the soliton Kelly sidebands, we deduced the group delay dispersion (GDD) for different layers of the graphene. The calculated results show that the variation of sample GDD is within the calculation error, indicating that the GDD of graphene is small to be negligible. This result is consistent with the experimental results reported by Chang et al. [Appl. Phys. Lett. 97, 211102 (2010)] using the phase-shift method. This study demonstrates that different layers graphene SAs have different MD contributions to the generation of laser pulses with different pulse widths.</description><identifier>ISSN: 0733-8724</identifier><identifier>EISSN: 1558-2213</identifier><identifier>DOI: 10.1109/JLT.2015.2471100</identifier><identifier>CODEN: JLTEDG</identifier><language>eng</language><publisher>IEEE</publisher><subject>Amplitude modulation ; Cavity resonators ; Dispersions ; Fiber lasers ; Graphene ; Holes ; laser mode-locking ; Lasers ; Mathematical analysis ; Modulation ; nanomaterials ; Optical fiber dispersion ; Optical fibers ; Sidebands ; ultrafast optics</subject><ispartof>Journal of lightwave technology, 2015-11, Vol.33 (21), p.4406-4412</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c296t-255defc0aefd9515d8b8f856030c8bc8c1fa71b874c5ad3175af46c4f3794dca3</citedby><cites>FETCH-LOGICAL-c296t-255defc0aefd9515d8b8f856030c8bc8c1fa71b874c5ad3175af46c4f3794dca3</cites><orcidid>0000-0002-2883-4627</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7226784$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7226784$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chen, Hou-Ren</creatorcontrib><creatorcontrib>Tsai, Chih-Ya</creatorcontrib><creatorcontrib>Chang, Ching-Yang</creatorcontrib><creatorcontrib>Lin, Kuei-Huei</creatorcontrib><creatorcontrib>Chang, Chen-Shiung</creatorcontrib><creatorcontrib>Hsieh, Wen-Feng</creatorcontrib><title>Investigation of Graphene Dispersion From Kelly Sideband in Stable Mode-Locked Erbium-Doped Fiber Laser by Few-Layer Graphene Saturable Absorbers</title><title>Journal of lightwave technology</title><addtitle>JLT</addtitle><description>In this paper, stable passively mode-locked fiber lasers (MLFLs) constructed using graphene saturable absorbers (SAs) with different layer numbers of ~1 to ~15 have been reported. The flat linear transmission spectrum in the range from 1540 to 1580 nm without any distinct absorption peak implies that the graphene SAs exhibit low dispersion in this region. Therefore, stable soliton-like pulses are generated because of negative dispersion provided by the fiber laser cavity, which requires no additional single-mode fiber (SMF) for dispersion compensation. Power-dependent transmission measurements show that the saturation intensity ranges from 1.2 to 3.2 MW/cm 2 and that the modulation depth (MD) of the graphene SAs increases with the number of graphene layers. All the samples were observed to easily mode-lock the laser with a stable mode-locking state persistently operated over hours. By analyzing the soliton Kelly sidebands, we deduced the group delay dispersion (GDD) for different layers of the graphene. The calculated results show that the variation of sample GDD is within the calculation error, indicating that the GDD of graphene is small to be negligible. This result is consistent with the experimental results reported by Chang et al. [Appl. Phys. Lett. 97, 211102 (2010)] using the phase-shift method. This study demonstrates that different layers graphene SAs have different MD contributions to the generation of laser pulses with different pulse widths.</description><subject>Amplitude modulation</subject><subject>Cavity resonators</subject><subject>Dispersions</subject><subject>Fiber lasers</subject><subject>Graphene</subject><subject>Holes</subject><subject>laser mode-locking</subject><subject>Lasers</subject><subject>Mathematical analysis</subject><subject>Modulation</subject><subject>nanomaterials</subject><subject>Optical fiber dispersion</subject><subject>Optical fibers</subject><subject>Sidebands</subject><subject>ultrafast optics</subject><issn>0733-8724</issn><issn>1558-2213</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1PGzEQhq2qSE1p75W4-Mhlgz9j7xEBobRbcQg9r_wxBkOyXuwNVX5G_zEOQVxm9I7eeUfzIPSDkjmlpD371d3NGaFyzoSqA_IJzaiUumGM8s9oRhTnjVZMfEFfS3kkhAqh1Qz9vxleoEzx3kwxDTgFfJ3N-AAD4MtYRshlP17mtMG_Yb3e4VX0YM3gcRzwajJ2DfhP8tB0yT2Bx1fZxu2muUxjFctoIePOlFrtDi_hX9OZXRUfN1Zm2ua3kHNbUq728g0dBbMu8P29H6O_y6u7i59Nd3t9c3HeNY61i6lhUnoIjhgIvpVUem110HJBOHHaOu1oMIparYSTxnOqpAli4UTgqhXeGX6MTg-5Y07P28qg38Ti6o9mgLQtPVUtZ0JIyquVHKwup1IyhH7McWPyrqek39PvK_1-T79_p19XTg4rEQA-7IqxhdKCvwLoVoJ5</recordid><startdate>20151101</startdate><enddate>20151101</enddate><creator>Chen, Hou-Ren</creator><creator>Tsai, Chih-Ya</creator><creator>Chang, Ching-Yang</creator><creator>Lin, Kuei-Huei</creator><creator>Chang, Chen-Shiung</creator><creator>Hsieh, Wen-Feng</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-2883-4627</orcidid></search><sort><creationdate>20151101</creationdate><title>Investigation of Graphene Dispersion From Kelly Sideband in Stable Mode-Locked Erbium-Doped Fiber Laser by Few-Layer Graphene Saturable Absorbers</title><author>Chen, Hou-Ren ; Tsai, Chih-Ya ; Chang, Ching-Yang ; Lin, Kuei-Huei ; Chang, Chen-Shiung ; Hsieh, Wen-Feng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c296t-255defc0aefd9515d8b8f856030c8bc8c1fa71b874c5ad3175af46c4f3794dca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Amplitude modulation</topic><topic>Cavity resonators</topic><topic>Dispersions</topic><topic>Fiber lasers</topic><topic>Graphene</topic><topic>Holes</topic><topic>laser mode-locking</topic><topic>Lasers</topic><topic>Mathematical analysis</topic><topic>Modulation</topic><topic>nanomaterials</topic><topic>Optical fiber dispersion</topic><topic>Optical fibers</topic><topic>Sidebands</topic><topic>ultrafast optics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Hou-Ren</creatorcontrib><creatorcontrib>Tsai, Chih-Ya</creatorcontrib><creatorcontrib>Chang, Ching-Yang</creatorcontrib><creatorcontrib>Lin, Kuei-Huei</creatorcontrib><creatorcontrib>Chang, Chen-Shiung</creatorcontrib><creatorcontrib>Hsieh, Wen-Feng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of lightwave technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chen, Hou-Ren</au><au>Tsai, Chih-Ya</au><au>Chang, Ching-Yang</au><au>Lin, Kuei-Huei</au><au>Chang, Chen-Shiung</au><au>Hsieh, Wen-Feng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Investigation of Graphene Dispersion From Kelly Sideband in Stable Mode-Locked Erbium-Doped Fiber Laser by Few-Layer Graphene Saturable Absorbers</atitle><jtitle>Journal of lightwave technology</jtitle><stitle>JLT</stitle><date>2015-11-01</date><risdate>2015</risdate><volume>33</volume><issue>21</issue><spage>4406</spage><epage>4412</epage><pages>4406-4412</pages><issn>0733-8724</issn><eissn>1558-2213</eissn><coden>JLTEDG</coden><abstract>In this paper, stable passively mode-locked fiber lasers (MLFLs) constructed using graphene saturable absorbers (SAs) with different layer numbers of ~1 to ~15 have been reported. The flat linear transmission spectrum in the range from 1540 to 1580 nm without any distinct absorption peak implies that the graphene SAs exhibit low dispersion in this region. Therefore, stable soliton-like pulses are generated because of negative dispersion provided by the fiber laser cavity, which requires no additional single-mode fiber (SMF) for dispersion compensation. Power-dependent transmission measurements show that the saturation intensity ranges from 1.2 to 3.2 MW/cm 2 and that the modulation depth (MD) of the graphene SAs increases with the number of graphene layers. All the samples were observed to easily mode-lock the laser with a stable mode-locking state persistently operated over hours. By analyzing the soliton Kelly sidebands, we deduced the group delay dispersion (GDD) for different layers of the graphene. The calculated results show that the variation of sample GDD is within the calculation error, indicating that the GDD of graphene is small to be negligible. This result is consistent with the experimental results reported by Chang et al. [Appl. Phys. Lett. 97, 211102 (2010)] using the phase-shift method. This study demonstrates that different layers graphene SAs have different MD contributions to the generation of laser pulses with different pulse widths.</abstract><pub>IEEE</pub><doi>10.1109/JLT.2015.2471100</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-2883-4627</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0733-8724
ispartof Journal of lightwave technology, 2015-11, Vol.33 (21), p.4406-4412
issn 0733-8724
1558-2213
language eng
recordid cdi_crossref_primary_10_1109_JLT_2015_2471100
source IEEE Electronic Library (IEL)
subjects Amplitude modulation
Cavity resonators
Dispersions
Fiber lasers
Graphene
Holes
laser mode-locking
Lasers
Mathematical analysis
Modulation
nanomaterials
Optical fiber dispersion
Optical fibers
Sidebands
ultrafast optics
title Investigation of Graphene Dispersion From Kelly Sideband in Stable Mode-Locked Erbium-Doped Fiber Laser by Few-Layer Graphene Saturable Absorbers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T04%3A45%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Investigation%20of%20Graphene%20Dispersion%20From%20Kelly%20Sideband%20in%20Stable%20Mode-Locked%20Erbium-Doped%20Fiber%20Laser%20by%20Few-Layer%20Graphene%20Saturable%20Absorbers&rft.jtitle=Journal%20of%20lightwave%20technology&rft.au=Chen,%20Hou-Ren&rft.date=2015-11-01&rft.volume=33&rft.issue=21&rft.spage=4406&rft.epage=4412&rft.pages=4406-4412&rft.issn=0733-8724&rft.eissn=1558-2213&rft.coden=JLTEDG&rft_id=info:doi/10.1109/JLT.2015.2471100&rft_dat=%3Cproquest_RIE%3E1793244513%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1793244513&rft_id=info:pmid/&rft_ieee_id=7226784&rfr_iscdi=true