Repetitive Backdoor Attacks and Countermeasures for Smart Grid Reinforcement Incremental Learning

In smart grids, smart meters (SMs) transmit power consumption data to utilities for billing and energy management. However, compromised SMs can report low consumption to reduce electricity bills. Deep reinforcement learning (DRL) detectors have recently been proposed to detect these attacks due to t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE internet of things journal 2024-10, p.1-1
Hauptverfasser: Eltoukhy, Ahmed T., Badr, Mahmoud M., Elgarhy, Islam, Mahmoud, Mohamed, Alsabaan, Maazen, Alshawi, Tariq
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue
container_start_page 1
container_title IEEE internet of things journal
container_volume
creator Eltoukhy, Ahmed T.
Badr, Mahmoud M.
Elgarhy, Islam
Mahmoud, Mohamed
Alsabaan, Maazen
Alshawi, Tariq
description In smart grids, smart meters (SMs) transmit power consumption data to utilities for billing and energy management. However, compromised SMs can report low consumption to reduce electricity bills. Deep reinforcement learning (DRL) detectors have recently been proposed to detect these attacks due to their adaptability to new attacks and changes in power consumption patterns. This paper explores backdoor attacks targeting DRL detectors during training, aiming to introduce a vulnerability in the detector. These attacks make the detector misclassify false low-consumption data when trigger samples are used while maintaining normal classification accuracy otherwise. We propose a DRL-based attack model that generates stealthy and unique trigger samples using cosine similarity. Our evaluations show the attack is initially highly successful, but its success diminishes with honest data used for incremental training of the detector. To sustain high success rates, attackers must influence incremental training. We also propose defenses, including data filtration during the preparation stage, adversarial training for the defense model during the training stage, and a combined approach, with experiments validating their effectiveness.
doi_str_mv 10.1109/JIOT.2024.3476458
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JIOT_2024_3476458</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10710324</ieee_id><sourcerecordid>10_1109_JIOT_2024_3476458</sourcerecordid><originalsourceid>FETCH-LOGICAL-c634-bf55a2ad2735cf72dc180be1483f609697787cb9469c288a38abf4632cd3b3e03</originalsourceid><addsrcrecordid>eNpNkNtKAzEQhoMoWGofQPAiL7A1p02yl7VorSwUau-XbHYi0TZbklTw7d0eLno1HzPzD8OH0CMlU0pJ9fyxXG2mjDAx5UJJUeobNGKcqUJIyW6v-B5NUvomhAyxklZyhMwa9pB99r-AX4z96fo-4lnOAyZsQofn_SFkiDsw6RAhYTfMP3cmZryIvsNr8GFoWdhByHgZbDyR2eIaTAw-fD2gO2e2CSaXOkabt9fN_L2oV4vlfFYXVnJRtK4sDTMdU7y0TrHOUk1aoEJzJ0klK6W0sm0lZGWZ1oZr0zohObMdbzkQPkb0fNbGPqUIrtlHP_z511DSHC01R0vN0VJzsTRkns4ZDwBX-4oSzgT_B98bZLs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Repetitive Backdoor Attacks and Countermeasures for Smart Grid Reinforcement Incremental Learning</title><source>IEEE Electronic Library (IEL)</source><creator>Eltoukhy, Ahmed T. ; Badr, Mahmoud M. ; Elgarhy, Islam ; Mahmoud, Mohamed ; Alsabaan, Maazen ; Alshawi, Tariq</creator><creatorcontrib>Eltoukhy, Ahmed T. ; Badr, Mahmoud M. ; Elgarhy, Islam ; Mahmoud, Mohamed ; Alsabaan, Maazen ; Alshawi, Tariq</creatorcontrib><description>In smart grids, smart meters (SMs) transmit power consumption data to utilities for billing and energy management. However, compromised SMs can report low consumption to reduce electricity bills. Deep reinforcement learning (DRL) detectors have recently been proposed to detect these attacks due to their adaptability to new attacks and changes in power consumption patterns. This paper explores backdoor attacks targeting DRL detectors during training, aiming to introduce a vulnerability in the detector. These attacks make the detector misclassify false low-consumption data when trigger samples are used while maintaining normal classification accuracy otherwise. We propose a DRL-based attack model that generates stealthy and unique trigger samples using cosine similarity. Our evaluations show the attack is initially highly successful, but its success diminishes with honest data used for incremental training of the detector. To sustain high success rates, attackers must influence incremental training. We also propose defenses, including data filtration during the preparation stage, adversarial training for the defense model during the training stage, and a combined approach, with experiments validating their effectiveness.</description><identifier>ISSN: 2327-4662</identifier><identifier>EISSN: 2327-4662</identifier><identifier>DOI: 10.1109/JIOT.2024.3476458</identifier><identifier>CODEN: IITJAU</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accuracy ; Adaptation models ; adversarial attacks ; backdoor attacks ; Convolutional neural networks ; Data models ; Detectors ; Electricity ; Feature extraction ; incremental learning ; Radio frequency ; reinforcement learning ; Security ; smart power grids ; Support vector machines ; Training</subject><ispartof>IEEE internet of things journal, 2024-10, p.1-1</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-8719-501X ; 0000-0002-9764-590X ; 0000-0002-8986-001X ; 0000-0001-8601-3184 ; 0000-0002-5509-8696 ; 0000-0002-7402-2478</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10710324$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10710324$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Eltoukhy, Ahmed T.</creatorcontrib><creatorcontrib>Badr, Mahmoud M.</creatorcontrib><creatorcontrib>Elgarhy, Islam</creatorcontrib><creatorcontrib>Mahmoud, Mohamed</creatorcontrib><creatorcontrib>Alsabaan, Maazen</creatorcontrib><creatorcontrib>Alshawi, Tariq</creatorcontrib><title>Repetitive Backdoor Attacks and Countermeasures for Smart Grid Reinforcement Incremental Learning</title><title>IEEE internet of things journal</title><addtitle>JIoT</addtitle><description>In smart grids, smart meters (SMs) transmit power consumption data to utilities for billing and energy management. However, compromised SMs can report low consumption to reduce electricity bills. Deep reinforcement learning (DRL) detectors have recently been proposed to detect these attacks due to their adaptability to new attacks and changes in power consumption patterns. This paper explores backdoor attacks targeting DRL detectors during training, aiming to introduce a vulnerability in the detector. These attacks make the detector misclassify false low-consumption data when trigger samples are used while maintaining normal classification accuracy otherwise. We propose a DRL-based attack model that generates stealthy and unique trigger samples using cosine similarity. Our evaluations show the attack is initially highly successful, but its success diminishes with honest data used for incremental training of the detector. To sustain high success rates, attackers must influence incremental training. We also propose defenses, including data filtration during the preparation stage, adversarial training for the defense model during the training stage, and a combined approach, with experiments validating their effectiveness.</description><subject>Accuracy</subject><subject>Adaptation models</subject><subject>adversarial attacks</subject><subject>backdoor attacks</subject><subject>Convolutional neural networks</subject><subject>Data models</subject><subject>Detectors</subject><subject>Electricity</subject><subject>Feature extraction</subject><subject>incremental learning</subject><subject>Radio frequency</subject><subject>reinforcement learning</subject><subject>Security</subject><subject>smart power grids</subject><subject>Support vector machines</subject><subject>Training</subject><issn>2327-4662</issn><issn>2327-4662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkNtKAzEQhoMoWGofQPAiL7A1p02yl7VorSwUau-XbHYi0TZbklTw7d0eLno1HzPzD8OH0CMlU0pJ9fyxXG2mjDAx5UJJUeobNGKcqUJIyW6v-B5NUvomhAyxklZyhMwa9pB99r-AX4z96fo-4lnOAyZsQofn_SFkiDsw6RAhYTfMP3cmZryIvsNr8GFoWdhByHgZbDyR2eIaTAw-fD2gO2e2CSaXOkabt9fN_L2oV4vlfFYXVnJRtK4sDTMdU7y0TrHOUk1aoEJzJ0klK6W0sm0lZGWZ1oZr0zohObMdbzkQPkb0fNbGPqUIrtlHP_z511DSHC01R0vN0VJzsTRkns4ZDwBX-4oSzgT_B98bZLs</recordid><startdate>20241008</startdate><enddate>20241008</enddate><creator>Eltoukhy, Ahmed T.</creator><creator>Badr, Mahmoud M.</creator><creator>Elgarhy, Islam</creator><creator>Mahmoud, Mohamed</creator><creator>Alsabaan, Maazen</creator><creator>Alshawi, Tariq</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-8719-501X</orcidid><orcidid>https://orcid.org/0000-0002-9764-590X</orcidid><orcidid>https://orcid.org/0000-0002-8986-001X</orcidid><orcidid>https://orcid.org/0000-0001-8601-3184</orcidid><orcidid>https://orcid.org/0000-0002-5509-8696</orcidid><orcidid>https://orcid.org/0000-0002-7402-2478</orcidid></search><sort><creationdate>20241008</creationdate><title>Repetitive Backdoor Attacks and Countermeasures for Smart Grid Reinforcement Incremental Learning</title><author>Eltoukhy, Ahmed T. ; Badr, Mahmoud M. ; Elgarhy, Islam ; Mahmoud, Mohamed ; Alsabaan, Maazen ; Alshawi, Tariq</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c634-bf55a2ad2735cf72dc180be1483f609697787cb9469c288a38abf4632cd3b3e03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Adaptation models</topic><topic>adversarial attacks</topic><topic>backdoor attacks</topic><topic>Convolutional neural networks</topic><topic>Data models</topic><topic>Detectors</topic><topic>Electricity</topic><topic>Feature extraction</topic><topic>incremental learning</topic><topic>Radio frequency</topic><topic>reinforcement learning</topic><topic>Security</topic><topic>smart power grids</topic><topic>Support vector machines</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Eltoukhy, Ahmed T.</creatorcontrib><creatorcontrib>Badr, Mahmoud M.</creatorcontrib><creatorcontrib>Elgarhy, Islam</creatorcontrib><creatorcontrib>Mahmoud, Mohamed</creatorcontrib><creatorcontrib>Alsabaan, Maazen</creatorcontrib><creatorcontrib>Alshawi, Tariq</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE internet of things journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Eltoukhy, Ahmed T.</au><au>Badr, Mahmoud M.</au><au>Elgarhy, Islam</au><au>Mahmoud, Mohamed</au><au>Alsabaan, Maazen</au><au>Alshawi, Tariq</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Repetitive Backdoor Attacks and Countermeasures for Smart Grid Reinforcement Incremental Learning</atitle><jtitle>IEEE internet of things journal</jtitle><stitle>JIoT</stitle><date>2024-10-08</date><risdate>2024</risdate><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2327-4662</issn><eissn>2327-4662</eissn><coden>IITJAU</coden><abstract>In smart grids, smart meters (SMs) transmit power consumption data to utilities for billing and energy management. However, compromised SMs can report low consumption to reduce electricity bills. Deep reinforcement learning (DRL) detectors have recently been proposed to detect these attacks due to their adaptability to new attacks and changes in power consumption patterns. This paper explores backdoor attacks targeting DRL detectors during training, aiming to introduce a vulnerability in the detector. These attacks make the detector misclassify false low-consumption data when trigger samples are used while maintaining normal classification accuracy otherwise. We propose a DRL-based attack model that generates stealthy and unique trigger samples using cosine similarity. Our evaluations show the attack is initially highly successful, but its success diminishes with honest data used for incremental training of the detector. To sustain high success rates, attackers must influence incremental training. We also propose defenses, including data filtration during the preparation stage, adversarial training for the defense model during the training stage, and a combined approach, with experiments validating their effectiveness.</abstract><pub>IEEE</pub><doi>10.1109/JIOT.2024.3476458</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-8719-501X</orcidid><orcidid>https://orcid.org/0000-0002-9764-590X</orcidid><orcidid>https://orcid.org/0000-0002-8986-001X</orcidid><orcidid>https://orcid.org/0000-0001-8601-3184</orcidid><orcidid>https://orcid.org/0000-0002-5509-8696</orcidid><orcidid>https://orcid.org/0000-0002-7402-2478</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2327-4662
ispartof IEEE internet of things journal, 2024-10, p.1-1
issn 2327-4662
2327-4662
language eng
recordid cdi_crossref_primary_10_1109_JIOT_2024_3476458
source IEEE Electronic Library (IEL)
subjects Accuracy
Adaptation models
adversarial attacks
backdoor attacks
Convolutional neural networks
Data models
Detectors
Electricity
Feature extraction
incremental learning
Radio frequency
reinforcement learning
Security
smart power grids
Support vector machines
Training
title Repetitive Backdoor Attacks and Countermeasures for Smart Grid Reinforcement Incremental Learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T19%3A13%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Repetitive%20Backdoor%20Attacks%20and%20Countermeasures%20for%20Smart%20Grid%20Reinforcement%20Incremental%20Learning&rft.jtitle=IEEE%20internet%20of%20things%20journal&rft.au=Eltoukhy,%20Ahmed%20T.&rft.date=2024-10-08&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2327-4662&rft.eissn=2327-4662&rft.coden=IITJAU&rft_id=info:doi/10.1109/JIOT.2024.3476458&rft_dat=%3Ccrossref_RIE%3E10_1109_JIOT_2024_3476458%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10710324&rfr_iscdi=true