Assessing and Improving IoT Sensor Data Quality in Environmental Monitoring Networks: A Focus on Peatlands
Advances in Internet of Things (IoT) technologies have resulted in a significant surge in the utilization of sensor devices across diverse domains for environmental sensing and monitoring. The applications of IoT sensor devices in environmental monitoring span a wide range, including the surveillanc...
Gespeichert in:
Veröffentlicht in: | IEEE internet of things journal 2024-01, Vol.11 (24), p.40727-40742 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 40742 |
---|---|
container_issue | 24 |
container_start_page | 40727 |
container_title | IEEE internet of things journal |
container_volume | 11 |
creator | Okafor, Nwamaka Ingle, Ruchita Okwudili Matthew, Ugochukwu Saunders, Matthew Delaney, Declan T. |
description | Advances in Internet of Things (IoT) technologies have resulted in a significant surge in the utilization of sensor devices across diverse domains for environmental sensing and monitoring. The applications of IoT sensor devices in environmental monitoring span a wide range, including the surveillance of biodiverse areas, such as peatlands, forests, and oceans, as well as air quality monitoring, commercial agriculture, and the safeguarding of endangered species. This article provides a long-term evaluation of IoT sensors data quality in environmental monitoring networks, particularly focusing on peatlands. IoT sensors have the capacity to provide high-resolution spatiotemporal data set in environmental monitoring networks. Sensor data quality plays a significant role in increasing the adoption of IoT devices for environmental data gathering. However, logistics challenges (i.e., in harsh and unfavorable weather conditions) along with low-cost components limitations add on to the data collection errors. This article identifies specific challenges and issues related to IoT sensor data quality in different peatland ecotopes. These challenges include sensor placement and calibration, data validation and fusion, environmental interference, and the management of data gaps and uncertainties. This research work evaluates methods for improving data quality in peatland monitoring network by encompassing advanced sensor calibration techniques, data validation algorithms, machine learning approaches, data processing, and data fusion strategies. |
doi_str_mv | 10.1109/JIOT.2024.3454241 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JIOT_2024_3454241</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10664494</ieee_id><sourcerecordid>3143030380</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1341-a617b032cb0dd750c4ff975eee230f9a30fff0d52cc2a187607bd6f2f2c898cd3</originalsourceid><addsrcrecordid>eNpNUF1LwzAUDaLgmPsBgg8Bnzvz1bT1bUynlekU53PI0kQ6u2Qm7WT_3pTtYVy4H3DOufceAK4xGmOMiruXcrEcE0TYmLKUEYbPwIBQkiWMc3J-0l-CUQhrhFCkpbjgA7CehKBDqO03lLaC5Wbr3a6fSreEn9oG5-GDbCX86GRTt3tYW_hod7V3dqNtKxv46mzdOt9z3nT75_xPuIcTOHOqC9BZ-K5l20TtcAUujGyCHh3rEHzNHpfT52S-eCqnk3miMGU4kRxnK0SJWqGqylKkmDFFlmqtCUWmkDEZg6qUKEUkzjOOslXFDTFE5UWuKjoEtwfd-Mpvp0Mr1q7zNq4UFDOKYuQoovABpbwLwWsjtr7eSL8XGIneVdG7KnpXxdHVyLk5cOp4zQmec8YKRv8BdHFzyQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3143030380</pqid></control><display><type>article</type><title>Assessing and Improving IoT Sensor Data Quality in Environmental Monitoring Networks: A Focus on Peatlands</title><source>IEEE Electronic Library (IEL)</source><creator>Okafor, Nwamaka ; Ingle, Ruchita ; Okwudili Matthew, Ugochukwu ; Saunders, Matthew ; Delaney, Declan T.</creator><creatorcontrib>Okafor, Nwamaka ; Ingle, Ruchita ; Okwudili Matthew, Ugochukwu ; Saunders, Matthew ; Delaney, Declan T.</creatorcontrib><description>Advances in Internet of Things (IoT) technologies have resulted in a significant surge in the utilization of sensor devices across diverse domains for environmental sensing and monitoring. The applications of IoT sensor devices in environmental monitoring span a wide range, including the surveillance of biodiverse areas, such as peatlands, forests, and oceans, as well as air quality monitoring, commercial agriculture, and the safeguarding of endangered species. This article provides a long-term evaluation of IoT sensors data quality in environmental monitoring networks, particularly focusing on peatlands. IoT sensors have the capacity to provide high-resolution spatiotemporal data set in environmental monitoring networks. Sensor data quality plays a significant role in increasing the adoption of IoT devices for environmental data gathering. However, logistics challenges (i.e., in harsh and unfavorable weather conditions) along with low-cost components limitations add on to the data collection errors. This article identifies specific challenges and issues related to IoT sensor data quality in different peatland ecotopes. These challenges include sensor placement and calibration, data validation and fusion, environmental interference, and the management of data gaps and uncertainties. This research work evaluates methods for improving data quality in peatland monitoring network by encompassing advanced sensor calibration techniques, data validation algorithms, machine learning approaches, data processing, and data fusion strategies.</description><identifier>ISSN: 2327-4662</identifier><identifier>EISSN: 2327-4662</identifier><identifier>DOI: 10.1109/JIOT.2024.3454241</identifier><identifier>CODEN: IITJAU</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Air monitoring ; Air quality ; Algorithms ; Atmospheric measurements ; Atmospheric modeling ; Calibration ; Data collection ; Data integration ; Data integrity ; Data processing ; data quality ; data validation ; Ecosystems ; Endangered species ; Environmental management ; Environmental monitoring ; Internet of Things ; Internet of Things (IoT) sensors ; Machine learning ; Monitoring ; Multisensor fusion ; Networks ; Oceans ; Peatlands ; Sensors ; Spatiotemporal data ; Weather</subject><ispartof>IEEE internet of things journal, 2024-01, Vol.11 (24), p.40727-40742</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-0828-9710 ; 0000-0001-7028-3307 ; 0000-0001-5571-229X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10664494$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids></links><search><creatorcontrib>Okafor, Nwamaka</creatorcontrib><creatorcontrib>Ingle, Ruchita</creatorcontrib><creatorcontrib>Okwudili Matthew, Ugochukwu</creatorcontrib><creatorcontrib>Saunders, Matthew</creatorcontrib><creatorcontrib>Delaney, Declan T.</creatorcontrib><title>Assessing and Improving IoT Sensor Data Quality in Environmental Monitoring Networks: A Focus on Peatlands</title><title>IEEE internet of things journal</title><addtitle>JIoT</addtitle><description>Advances in Internet of Things (IoT) technologies have resulted in a significant surge in the utilization of sensor devices across diverse domains for environmental sensing and monitoring. The applications of IoT sensor devices in environmental monitoring span a wide range, including the surveillance of biodiverse areas, such as peatlands, forests, and oceans, as well as air quality monitoring, commercial agriculture, and the safeguarding of endangered species. This article provides a long-term evaluation of IoT sensors data quality in environmental monitoring networks, particularly focusing on peatlands. IoT sensors have the capacity to provide high-resolution spatiotemporal data set in environmental monitoring networks. Sensor data quality plays a significant role in increasing the adoption of IoT devices for environmental data gathering. However, logistics challenges (i.e., in harsh and unfavorable weather conditions) along with low-cost components limitations add on to the data collection errors. This article identifies specific challenges and issues related to IoT sensor data quality in different peatland ecotopes. These challenges include sensor placement and calibration, data validation and fusion, environmental interference, and the management of data gaps and uncertainties. This research work evaluates methods for improving data quality in peatland monitoring network by encompassing advanced sensor calibration techniques, data validation algorithms, machine learning approaches, data processing, and data fusion strategies.</description><subject>Air monitoring</subject><subject>Air quality</subject><subject>Algorithms</subject><subject>Atmospheric measurements</subject><subject>Atmospheric modeling</subject><subject>Calibration</subject><subject>Data collection</subject><subject>Data integration</subject><subject>Data integrity</subject><subject>Data processing</subject><subject>data quality</subject><subject>data validation</subject><subject>Ecosystems</subject><subject>Endangered species</subject><subject>Environmental management</subject><subject>Environmental monitoring</subject><subject>Internet of Things</subject><subject>Internet of Things (IoT) sensors</subject><subject>Machine learning</subject><subject>Monitoring</subject><subject>Multisensor fusion</subject><subject>Networks</subject><subject>Oceans</subject><subject>Peatlands</subject><subject>Sensors</subject><subject>Spatiotemporal data</subject><subject>Weather</subject><issn>2327-4662</issn><issn>2327-4662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><recordid>eNpNUF1LwzAUDaLgmPsBgg8Bnzvz1bT1bUynlekU53PI0kQ6u2Qm7WT_3pTtYVy4H3DOufceAK4xGmOMiruXcrEcE0TYmLKUEYbPwIBQkiWMc3J-0l-CUQhrhFCkpbjgA7CehKBDqO03lLaC5Wbr3a6fSreEn9oG5-GDbCX86GRTt3tYW_hod7V3dqNtKxv46mzdOt9z3nT75_xPuIcTOHOqC9BZ-K5l20TtcAUujGyCHh3rEHzNHpfT52S-eCqnk3miMGU4kRxnK0SJWqGqylKkmDFFlmqtCUWmkDEZg6qUKEUkzjOOslXFDTFE5UWuKjoEtwfd-Mpvp0Mr1q7zNq4UFDOKYuQoovABpbwLwWsjtr7eSL8XGIneVdG7KnpXxdHVyLk5cOp4zQmec8YKRv8BdHFzyQ</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>Okafor, Nwamaka</creator><creator>Ingle, Ruchita</creator><creator>Okwudili Matthew, Ugochukwu</creator><creator>Saunders, Matthew</creator><creator>Delaney, Declan T.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-0828-9710</orcidid><orcidid>https://orcid.org/0000-0001-7028-3307</orcidid><orcidid>https://orcid.org/0000-0001-5571-229X</orcidid></search><sort><creationdate>20240101</creationdate><title>Assessing and Improving IoT Sensor Data Quality in Environmental Monitoring Networks: A Focus on Peatlands</title><author>Okafor, Nwamaka ; Ingle, Ruchita ; Okwudili Matthew, Ugochukwu ; Saunders, Matthew ; Delaney, Declan T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1341-a617b032cb0dd750c4ff975eee230f9a30fff0d52cc2a187607bd6f2f2c898cd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Air monitoring</topic><topic>Air quality</topic><topic>Algorithms</topic><topic>Atmospheric measurements</topic><topic>Atmospheric modeling</topic><topic>Calibration</topic><topic>Data collection</topic><topic>Data integration</topic><topic>Data integrity</topic><topic>Data processing</topic><topic>data quality</topic><topic>data validation</topic><topic>Ecosystems</topic><topic>Endangered species</topic><topic>Environmental management</topic><topic>Environmental monitoring</topic><topic>Internet of Things</topic><topic>Internet of Things (IoT) sensors</topic><topic>Machine learning</topic><topic>Monitoring</topic><topic>Multisensor fusion</topic><topic>Networks</topic><topic>Oceans</topic><topic>Peatlands</topic><topic>Sensors</topic><topic>Spatiotemporal data</topic><topic>Weather</topic><toplevel>online_resources</toplevel><creatorcontrib>Okafor, Nwamaka</creatorcontrib><creatorcontrib>Ingle, Ruchita</creatorcontrib><creatorcontrib>Okwudili Matthew, Ugochukwu</creatorcontrib><creatorcontrib>Saunders, Matthew</creatorcontrib><creatorcontrib>Delaney, Declan T.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE internet of things journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Okafor, Nwamaka</au><au>Ingle, Ruchita</au><au>Okwudili Matthew, Ugochukwu</au><au>Saunders, Matthew</au><au>Delaney, Declan T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Assessing and Improving IoT Sensor Data Quality in Environmental Monitoring Networks: A Focus on Peatlands</atitle><jtitle>IEEE internet of things journal</jtitle><stitle>JIoT</stitle><date>2024-01-01</date><risdate>2024</risdate><volume>11</volume><issue>24</issue><spage>40727</spage><epage>40742</epage><pages>40727-40742</pages><issn>2327-4662</issn><eissn>2327-4662</eissn><coden>IITJAU</coden><abstract>Advances in Internet of Things (IoT) technologies have resulted in a significant surge in the utilization of sensor devices across diverse domains for environmental sensing and monitoring. The applications of IoT sensor devices in environmental monitoring span a wide range, including the surveillance of biodiverse areas, such as peatlands, forests, and oceans, as well as air quality monitoring, commercial agriculture, and the safeguarding of endangered species. This article provides a long-term evaluation of IoT sensors data quality in environmental monitoring networks, particularly focusing on peatlands. IoT sensors have the capacity to provide high-resolution spatiotemporal data set in environmental monitoring networks. Sensor data quality plays a significant role in increasing the adoption of IoT devices for environmental data gathering. However, logistics challenges (i.e., in harsh and unfavorable weather conditions) along with low-cost components limitations add on to the data collection errors. This article identifies specific challenges and issues related to IoT sensor data quality in different peatland ecotopes. These challenges include sensor placement and calibration, data validation and fusion, environmental interference, and the management of data gaps and uncertainties. This research work evaluates methods for improving data quality in peatland monitoring network by encompassing advanced sensor calibration techniques, data validation algorithms, machine learning approaches, data processing, and data fusion strategies.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JIOT.2024.3454241</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-0828-9710</orcidid><orcidid>https://orcid.org/0000-0001-7028-3307</orcidid><orcidid>https://orcid.org/0000-0001-5571-229X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2327-4662 |
ispartof | IEEE internet of things journal, 2024-01, Vol.11 (24), p.40727-40742 |
issn | 2327-4662 2327-4662 |
language | eng |
recordid | cdi_crossref_primary_10_1109_JIOT_2024_3454241 |
source | IEEE Electronic Library (IEL) |
subjects | Air monitoring Air quality Algorithms Atmospheric measurements Atmospheric modeling Calibration Data collection Data integration Data integrity Data processing data quality data validation Ecosystems Endangered species Environmental management Environmental monitoring Internet of Things Internet of Things (IoT) sensors Machine learning Monitoring Multisensor fusion Networks Oceans Peatlands Sensors Spatiotemporal data Weather |
title | Assessing and Improving IoT Sensor Data Quality in Environmental Monitoring Networks: A Focus on Peatlands |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T17%3A15%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Assessing%20and%20Improving%20IoT%20Sensor%20Data%20Quality%20in%20Environmental%20Monitoring%20Networks:%20A%20Focus%20on%20Peatlands&rft.jtitle=IEEE%20internet%20of%20things%20journal&rft.au=Okafor,%20Nwamaka&rft.date=2024-01-01&rft.volume=11&rft.issue=24&rft.spage=40727&rft.epage=40742&rft.pages=40727-40742&rft.issn=2327-4662&rft.eissn=2327-4662&rft.coden=IITJAU&rft_id=info:doi/10.1109/JIOT.2024.3454241&rft_dat=%3Cproquest_cross%3E3143030380%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3143030380&rft_id=info:pmid/&rft_ieee_id=10664494&rfr_iscdi=true |