Joint Optimization of Trajectory Control, Task Offloading, and Resource Allocation in Air-Ground Integrated Networks
In an air-ground integrated network (AGIN), low-altitude unmanned aerial vehicles (UAVs) and a high-altitude platform (HAP) operate synergistically to support computationally expensive and delay-critical applications of mobile ground devices (GDs). UAVs obtain tasks from GDs, execute the tasks, and...
Gespeichert in:
Veröffentlicht in: | IEEE internet of things journal 2024-07, Vol.11 (13), p.24273-24288 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 24288 |
---|---|
container_issue | 13 |
container_start_page | 24273 |
container_title | IEEE internet of things journal |
container_volume | 11 |
creator | Morshed Alam, Muhammad Moh, Sangman |
description | In an air-ground integrated network (AGIN), low-altitude unmanned aerial vehicles (UAVs) and a high-altitude platform (HAP) operate synergistically to support computationally expensive and delay-critical applications of mobile ground devices (GDs). UAVs obtain tasks from GDs, execute the tasks, and offload some of the tasks to the HAP. In AGINs, the trajectory control of a UAV swarm should provide optimal coverage to randomly distributed mobile GDs. The limited resources of UAVs, such as energy, computation, caching, and bandwidth, result in further challenges. Therefore, a joint optimization problem is formulated in this study to minimize the task execution delay and energy consumption of UAVs by optimizing the UAV's trajectory, GD association, task-offloading ratio, and resource allocation. The limited resources, maximum task execution delay, task queue size, and mobility of UAVs are regarded as key constraints. Solving the problem is intricate owing to the complex mixed-integer nonlinear constraints coupled with a large continuous and discrete decision space. To track the dynamics in AGINs and efficiently solve the problem above, we utilize a swarming behavior-integrated multiagent gated recurrent unit-based actor and multihead attention-based critic network (SMA-GAC) framework. Results of simulative evaluation show that the proposed SMA-GAC outperforms baseline methods. |
doi_str_mv | 10.1109/JIOT.2024.3390168 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JIOT_2024_3390168</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10504534</ieee_id><sourcerecordid>3072327271</sourcerecordid><originalsourceid>FETCH-LOGICAL-c176t-ede89b7b0e15de4388b050e311bad4872c60c63e437f0a438f31800cb951f7713</originalsourceid><addsrcrecordid>eNpNkMFKw0AQhoMoWGofQPCw4LWps9kkmxxL0dpSDEg8h81mUrZNs3V3i9SnNzE99DQD8_0zw-d5jxRmlEL6sl5l-SyAIJwxlgKNkxtvFLCA-2EcB7dX_b03sXYHAF0somk88txaq9aR7OjUQf0Kp3RLdE1yI3YonTZnstCtM7qZklzYPcnqutGiUu12SkRbkU-0-mQkknnTaDnkVUvmyvhLo08dsWodbo1wWJEPdD_a7O2Dd1eLxuLkUsfe19trvnj3N9lytZhvfEl57HysMElLXgLSqMKQJUkJESCjtBRVmPBAxiBj1k14DaKb14wmALJMI1pzTtnYex72Ho3-PqF1xa57tu1OFgx4byX4p-hASaOtNVgXR6MOwpwLCkXvt-j9Fr3f4uK3yzwNGYWIV3wEYcRC9gfDZ3br</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3072327271</pqid></control><display><type>article</type><title>Joint Optimization of Trajectory Control, Task Offloading, and Resource Allocation in Air-Ground Integrated Networks</title><source>IEEE Electronic Library (IEL)</source><creator>Morshed Alam, Muhammad ; Moh, Sangman</creator><creatorcontrib>Morshed Alam, Muhammad ; Moh, Sangman</creatorcontrib><description>In an air-ground integrated network (AGIN), low-altitude unmanned aerial vehicles (UAVs) and a high-altitude platform (HAP) operate synergistically to support computationally expensive and delay-critical applications of mobile ground devices (GDs). UAVs obtain tasks from GDs, execute the tasks, and offload some of the tasks to the HAP. In AGINs, the trajectory control of a UAV swarm should provide optimal coverage to randomly distributed mobile GDs. The limited resources of UAVs, such as energy, computation, caching, and bandwidth, result in further challenges. Therefore, a joint optimization problem is formulated in this study to minimize the task execution delay and energy consumption of UAVs by optimizing the UAV's trajectory, GD association, task-offloading ratio, and resource allocation. The limited resources, maximum task execution delay, task queue size, and mobility of UAVs are regarded as key constraints. Solving the problem is intricate owing to the complex mixed-integer nonlinear constraints coupled with a large continuous and discrete decision space. To track the dynamics in AGINs and efficiently solve the problem above, we utilize a swarming behavior-integrated multiagent gated recurrent unit-based actor and multihead attention-based critic network (SMA-GAC) framework. Results of simulative evaluation show that the proposed SMA-GAC outperforms baseline methods.</description><identifier>ISSN: 2327-4662</identifier><identifier>EISSN: 2327-4662</identifier><identifier>DOI: 10.1109/JIOT.2024.3390168</identifier><identifier>CODEN: IITJAU</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Air-ground integrated networks (AGINs) ; Autonomous aerial vehicles ; Computation offloading ; Delay ; Delays ; Energy consumption ; High altitude ; Internet of Things ; joint optimization ; Low altitude ; Mixed integer ; multiagent deep reinforcement learning (MA-DRL) ; Multiagent systems ; Resource allocation ; Resource management ; Swarming ; Task analysis ; task offloading ; Trajectory ; Trajectory control ; Trajectory optimization ; Unmanned aerial vehicles</subject><ispartof>IEEE internet of things journal, 2024-07, Vol.11 (13), p.24273-24288</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c176t-ede89b7b0e15de4388b050e311bad4872c60c63e437f0a438f31800cb951f7713</cites><orcidid>0000-0002-6280-7139 ; 0000-0001-9175-3400</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10504534$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10504534$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Morshed Alam, Muhammad</creatorcontrib><creatorcontrib>Moh, Sangman</creatorcontrib><title>Joint Optimization of Trajectory Control, Task Offloading, and Resource Allocation in Air-Ground Integrated Networks</title><title>IEEE internet of things journal</title><addtitle>JIoT</addtitle><description>In an air-ground integrated network (AGIN), low-altitude unmanned aerial vehicles (UAVs) and a high-altitude platform (HAP) operate synergistically to support computationally expensive and delay-critical applications of mobile ground devices (GDs). UAVs obtain tasks from GDs, execute the tasks, and offload some of the tasks to the HAP. In AGINs, the trajectory control of a UAV swarm should provide optimal coverage to randomly distributed mobile GDs. The limited resources of UAVs, such as energy, computation, caching, and bandwidth, result in further challenges. Therefore, a joint optimization problem is formulated in this study to minimize the task execution delay and energy consumption of UAVs by optimizing the UAV's trajectory, GD association, task-offloading ratio, and resource allocation. The limited resources, maximum task execution delay, task queue size, and mobility of UAVs are regarded as key constraints. Solving the problem is intricate owing to the complex mixed-integer nonlinear constraints coupled with a large continuous and discrete decision space. To track the dynamics in AGINs and efficiently solve the problem above, we utilize a swarming behavior-integrated multiagent gated recurrent unit-based actor and multihead attention-based critic network (SMA-GAC) framework. Results of simulative evaluation show that the proposed SMA-GAC outperforms baseline methods.</description><subject>Air-ground integrated networks (AGINs)</subject><subject>Autonomous aerial vehicles</subject><subject>Computation offloading</subject><subject>Delay</subject><subject>Delays</subject><subject>Energy consumption</subject><subject>High altitude</subject><subject>Internet of Things</subject><subject>joint optimization</subject><subject>Low altitude</subject><subject>Mixed integer</subject><subject>multiagent deep reinforcement learning (MA-DRL)</subject><subject>Multiagent systems</subject><subject>Resource allocation</subject><subject>Resource management</subject><subject>Swarming</subject><subject>Task analysis</subject><subject>task offloading</subject><subject>Trajectory</subject><subject>Trajectory control</subject><subject>Trajectory optimization</subject><subject>Unmanned aerial vehicles</subject><issn>2327-4662</issn><issn>2327-4662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkMFKw0AQhoMoWGofQPCw4LWps9kkmxxL0dpSDEg8h81mUrZNs3V3i9SnNzE99DQD8_0zw-d5jxRmlEL6sl5l-SyAIJwxlgKNkxtvFLCA-2EcB7dX_b03sXYHAF0somk88txaq9aR7OjUQf0Kp3RLdE1yI3YonTZnstCtM7qZklzYPcnqutGiUu12SkRbkU-0-mQkknnTaDnkVUvmyvhLo08dsWodbo1wWJEPdD_a7O2Dd1eLxuLkUsfe19trvnj3N9lytZhvfEl57HysMElLXgLSqMKQJUkJESCjtBRVmPBAxiBj1k14DaKb14wmALJMI1pzTtnYex72Ho3-PqF1xa57tu1OFgx4byX4p-hASaOtNVgXR6MOwpwLCkXvt-j9Fr3f4uK3yzwNGYWIV3wEYcRC9gfDZ3br</recordid><startdate>20240701</startdate><enddate>20240701</enddate><creator>Morshed Alam, Muhammad</creator><creator>Moh, Sangman</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-6280-7139</orcidid><orcidid>https://orcid.org/0000-0001-9175-3400</orcidid></search><sort><creationdate>20240701</creationdate><title>Joint Optimization of Trajectory Control, Task Offloading, and Resource Allocation in Air-Ground Integrated Networks</title><author>Morshed Alam, Muhammad ; Moh, Sangman</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c176t-ede89b7b0e15de4388b050e311bad4872c60c63e437f0a438f31800cb951f7713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Air-ground integrated networks (AGINs)</topic><topic>Autonomous aerial vehicles</topic><topic>Computation offloading</topic><topic>Delay</topic><topic>Delays</topic><topic>Energy consumption</topic><topic>High altitude</topic><topic>Internet of Things</topic><topic>joint optimization</topic><topic>Low altitude</topic><topic>Mixed integer</topic><topic>multiagent deep reinforcement learning (MA-DRL)</topic><topic>Multiagent systems</topic><topic>Resource allocation</topic><topic>Resource management</topic><topic>Swarming</topic><topic>Task analysis</topic><topic>task offloading</topic><topic>Trajectory</topic><topic>Trajectory control</topic><topic>Trajectory optimization</topic><topic>Unmanned aerial vehicles</topic><toplevel>online_resources</toplevel><creatorcontrib>Morshed Alam, Muhammad</creatorcontrib><creatorcontrib>Moh, Sangman</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE internet of things journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Morshed Alam, Muhammad</au><au>Moh, Sangman</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Joint Optimization of Trajectory Control, Task Offloading, and Resource Allocation in Air-Ground Integrated Networks</atitle><jtitle>IEEE internet of things journal</jtitle><stitle>JIoT</stitle><date>2024-07-01</date><risdate>2024</risdate><volume>11</volume><issue>13</issue><spage>24273</spage><epage>24288</epage><pages>24273-24288</pages><issn>2327-4662</issn><eissn>2327-4662</eissn><coden>IITJAU</coden><abstract>In an air-ground integrated network (AGIN), low-altitude unmanned aerial vehicles (UAVs) and a high-altitude platform (HAP) operate synergistically to support computationally expensive and delay-critical applications of mobile ground devices (GDs). UAVs obtain tasks from GDs, execute the tasks, and offload some of the tasks to the HAP. In AGINs, the trajectory control of a UAV swarm should provide optimal coverage to randomly distributed mobile GDs. The limited resources of UAVs, such as energy, computation, caching, and bandwidth, result in further challenges. Therefore, a joint optimization problem is formulated in this study to minimize the task execution delay and energy consumption of UAVs by optimizing the UAV's trajectory, GD association, task-offloading ratio, and resource allocation. The limited resources, maximum task execution delay, task queue size, and mobility of UAVs are regarded as key constraints. Solving the problem is intricate owing to the complex mixed-integer nonlinear constraints coupled with a large continuous and discrete decision space. To track the dynamics in AGINs and efficiently solve the problem above, we utilize a swarming behavior-integrated multiagent gated recurrent unit-based actor and multihead attention-based critic network (SMA-GAC) framework. Results of simulative evaluation show that the proposed SMA-GAC outperforms baseline methods.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JIOT.2024.3390168</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-6280-7139</orcidid><orcidid>https://orcid.org/0000-0001-9175-3400</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2327-4662 |
ispartof | IEEE internet of things journal, 2024-07, Vol.11 (13), p.24273-24288 |
issn | 2327-4662 2327-4662 |
language | eng |
recordid | cdi_crossref_primary_10_1109_JIOT_2024_3390168 |
source | IEEE Electronic Library (IEL) |
subjects | Air-ground integrated networks (AGINs) Autonomous aerial vehicles Computation offloading Delay Delays Energy consumption High altitude Internet of Things joint optimization Low altitude Mixed integer multiagent deep reinforcement learning (MA-DRL) Multiagent systems Resource allocation Resource management Swarming Task analysis task offloading Trajectory Trajectory control Trajectory optimization Unmanned aerial vehicles |
title | Joint Optimization of Trajectory Control, Task Offloading, and Resource Allocation in Air-Ground Integrated Networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T11%3A20%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Joint%20Optimization%20of%20Trajectory%20Control,%20Task%20Offloading,%20and%20Resource%20Allocation%20in%20Air-Ground%20Integrated%20Networks&rft.jtitle=IEEE%20internet%20of%20things%20journal&rft.au=Morshed%20Alam,%20Muhammad&rft.date=2024-07-01&rft.volume=11&rft.issue=13&rft.spage=24273&rft.epage=24288&rft.pages=24273-24288&rft.issn=2327-4662&rft.eissn=2327-4662&rft.coden=IITJAU&rft_id=info:doi/10.1109/JIOT.2024.3390168&rft_dat=%3Cproquest_RIE%3E3072327271%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3072327271&rft_id=info:pmid/&rft_ieee_id=10504534&rfr_iscdi=true |