Joint Optimization of Trajectory Control, Task Offloading, and Resource Allocation in Air-Ground Integrated Networks

In an air-ground integrated network (AGIN), low-altitude unmanned aerial vehicles (UAVs) and a high-altitude platform (HAP) operate synergistically to support computationally expensive and delay-critical applications of mobile ground devices (GDs). UAVs obtain tasks from GDs, execute the tasks, and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE internet of things journal 2024-07, Vol.11 (13), p.24273-24288
Hauptverfasser: Morshed Alam, Muhammad, Moh, Sangman
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 24288
container_issue 13
container_start_page 24273
container_title IEEE internet of things journal
container_volume 11
creator Morshed Alam, Muhammad
Moh, Sangman
description In an air-ground integrated network (AGIN), low-altitude unmanned aerial vehicles (UAVs) and a high-altitude platform (HAP) operate synergistically to support computationally expensive and delay-critical applications of mobile ground devices (GDs). UAVs obtain tasks from GDs, execute the tasks, and offload some of the tasks to the HAP. In AGINs, the trajectory control of a UAV swarm should provide optimal coverage to randomly distributed mobile GDs. The limited resources of UAVs, such as energy, computation, caching, and bandwidth, result in further challenges. Therefore, a joint optimization problem is formulated in this study to minimize the task execution delay and energy consumption of UAVs by optimizing the UAV's trajectory, GD association, task-offloading ratio, and resource allocation. The limited resources, maximum task execution delay, task queue size, and mobility of UAVs are regarded as key constraints. Solving the problem is intricate owing to the complex mixed-integer nonlinear constraints coupled with a large continuous and discrete decision space. To track the dynamics in AGINs and efficiently solve the problem above, we utilize a swarming behavior-integrated multiagent gated recurrent unit-based actor and multihead attention-based critic network (SMA-GAC) framework. Results of simulative evaluation show that the proposed SMA-GAC outperforms baseline methods.
doi_str_mv 10.1109/JIOT.2024.3390168
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JIOT_2024_3390168</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10504534</ieee_id><sourcerecordid>3072327271</sourcerecordid><originalsourceid>FETCH-LOGICAL-c176t-ede89b7b0e15de4388b050e311bad4872c60c63e437f0a438f31800cb951f7713</originalsourceid><addsrcrecordid>eNpNkMFKw0AQhoMoWGofQPCw4LWps9kkmxxL0dpSDEg8h81mUrZNs3V3i9SnNzE99DQD8_0zw-d5jxRmlEL6sl5l-SyAIJwxlgKNkxtvFLCA-2EcB7dX_b03sXYHAF0somk88txaq9aR7OjUQf0Kp3RLdE1yI3YonTZnstCtM7qZklzYPcnqutGiUu12SkRbkU-0-mQkknnTaDnkVUvmyvhLo08dsWodbo1wWJEPdD_a7O2Dd1eLxuLkUsfe19trvnj3N9lytZhvfEl57HysMElLXgLSqMKQJUkJESCjtBRVmPBAxiBj1k14DaKb14wmALJMI1pzTtnYex72Ho3-PqF1xa57tu1OFgx4byX4p-hASaOtNVgXR6MOwpwLCkXvt-j9Fr3f4uK3yzwNGYWIV3wEYcRC9gfDZ3br</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3072327271</pqid></control><display><type>article</type><title>Joint Optimization of Trajectory Control, Task Offloading, and Resource Allocation in Air-Ground Integrated Networks</title><source>IEEE Electronic Library (IEL)</source><creator>Morshed Alam, Muhammad ; Moh, Sangman</creator><creatorcontrib>Morshed Alam, Muhammad ; Moh, Sangman</creatorcontrib><description>In an air-ground integrated network (AGIN), low-altitude unmanned aerial vehicles (UAVs) and a high-altitude platform (HAP) operate synergistically to support computationally expensive and delay-critical applications of mobile ground devices (GDs). UAVs obtain tasks from GDs, execute the tasks, and offload some of the tasks to the HAP. In AGINs, the trajectory control of a UAV swarm should provide optimal coverage to randomly distributed mobile GDs. The limited resources of UAVs, such as energy, computation, caching, and bandwidth, result in further challenges. Therefore, a joint optimization problem is formulated in this study to minimize the task execution delay and energy consumption of UAVs by optimizing the UAV's trajectory, GD association, task-offloading ratio, and resource allocation. The limited resources, maximum task execution delay, task queue size, and mobility of UAVs are regarded as key constraints. Solving the problem is intricate owing to the complex mixed-integer nonlinear constraints coupled with a large continuous and discrete decision space. To track the dynamics in AGINs and efficiently solve the problem above, we utilize a swarming behavior-integrated multiagent gated recurrent unit-based actor and multihead attention-based critic network (SMA-GAC) framework. Results of simulative evaluation show that the proposed SMA-GAC outperforms baseline methods.</description><identifier>ISSN: 2327-4662</identifier><identifier>EISSN: 2327-4662</identifier><identifier>DOI: 10.1109/JIOT.2024.3390168</identifier><identifier>CODEN: IITJAU</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Air-ground integrated networks (AGINs) ; Autonomous aerial vehicles ; Computation offloading ; Delay ; Delays ; Energy consumption ; High altitude ; Internet of Things ; joint optimization ; Low altitude ; Mixed integer ; multiagent deep reinforcement learning (MA-DRL) ; Multiagent systems ; Resource allocation ; Resource management ; Swarming ; Task analysis ; task offloading ; Trajectory ; Trajectory control ; Trajectory optimization ; Unmanned aerial vehicles</subject><ispartof>IEEE internet of things journal, 2024-07, Vol.11 (13), p.24273-24288</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c176t-ede89b7b0e15de4388b050e311bad4872c60c63e437f0a438f31800cb951f7713</cites><orcidid>0000-0002-6280-7139 ; 0000-0001-9175-3400</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10504534$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10504534$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Morshed Alam, Muhammad</creatorcontrib><creatorcontrib>Moh, Sangman</creatorcontrib><title>Joint Optimization of Trajectory Control, Task Offloading, and Resource Allocation in Air-Ground Integrated Networks</title><title>IEEE internet of things journal</title><addtitle>JIoT</addtitle><description>In an air-ground integrated network (AGIN), low-altitude unmanned aerial vehicles (UAVs) and a high-altitude platform (HAP) operate synergistically to support computationally expensive and delay-critical applications of mobile ground devices (GDs). UAVs obtain tasks from GDs, execute the tasks, and offload some of the tasks to the HAP. In AGINs, the trajectory control of a UAV swarm should provide optimal coverage to randomly distributed mobile GDs. The limited resources of UAVs, such as energy, computation, caching, and bandwidth, result in further challenges. Therefore, a joint optimization problem is formulated in this study to minimize the task execution delay and energy consumption of UAVs by optimizing the UAV's trajectory, GD association, task-offloading ratio, and resource allocation. The limited resources, maximum task execution delay, task queue size, and mobility of UAVs are regarded as key constraints. Solving the problem is intricate owing to the complex mixed-integer nonlinear constraints coupled with a large continuous and discrete decision space. To track the dynamics in AGINs and efficiently solve the problem above, we utilize a swarming behavior-integrated multiagent gated recurrent unit-based actor and multihead attention-based critic network (SMA-GAC) framework. Results of simulative evaluation show that the proposed SMA-GAC outperforms baseline methods.</description><subject>Air-ground integrated networks (AGINs)</subject><subject>Autonomous aerial vehicles</subject><subject>Computation offloading</subject><subject>Delay</subject><subject>Delays</subject><subject>Energy consumption</subject><subject>High altitude</subject><subject>Internet of Things</subject><subject>joint optimization</subject><subject>Low altitude</subject><subject>Mixed integer</subject><subject>multiagent deep reinforcement learning (MA-DRL)</subject><subject>Multiagent systems</subject><subject>Resource allocation</subject><subject>Resource management</subject><subject>Swarming</subject><subject>Task analysis</subject><subject>task offloading</subject><subject>Trajectory</subject><subject>Trajectory control</subject><subject>Trajectory optimization</subject><subject>Unmanned aerial vehicles</subject><issn>2327-4662</issn><issn>2327-4662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkMFKw0AQhoMoWGofQPCw4LWps9kkmxxL0dpSDEg8h81mUrZNs3V3i9SnNzE99DQD8_0zw-d5jxRmlEL6sl5l-SyAIJwxlgKNkxtvFLCA-2EcB7dX_b03sXYHAF0somk88txaq9aR7OjUQf0Kp3RLdE1yI3YonTZnstCtM7qZklzYPcnqutGiUu12SkRbkU-0-mQkknnTaDnkVUvmyvhLo08dsWodbo1wWJEPdD_a7O2Dd1eLxuLkUsfe19trvnj3N9lytZhvfEl57HysMElLXgLSqMKQJUkJESCjtBRVmPBAxiBj1k14DaKb14wmALJMI1pzTtnYex72Ho3-PqF1xa57tu1OFgx4byX4p-hASaOtNVgXR6MOwpwLCkXvt-j9Fr3f4uK3yzwNGYWIV3wEYcRC9gfDZ3br</recordid><startdate>20240701</startdate><enddate>20240701</enddate><creator>Morshed Alam, Muhammad</creator><creator>Moh, Sangman</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-6280-7139</orcidid><orcidid>https://orcid.org/0000-0001-9175-3400</orcidid></search><sort><creationdate>20240701</creationdate><title>Joint Optimization of Trajectory Control, Task Offloading, and Resource Allocation in Air-Ground Integrated Networks</title><author>Morshed Alam, Muhammad ; Moh, Sangman</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c176t-ede89b7b0e15de4388b050e311bad4872c60c63e437f0a438f31800cb951f7713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Air-ground integrated networks (AGINs)</topic><topic>Autonomous aerial vehicles</topic><topic>Computation offloading</topic><topic>Delay</topic><topic>Delays</topic><topic>Energy consumption</topic><topic>High altitude</topic><topic>Internet of Things</topic><topic>joint optimization</topic><topic>Low altitude</topic><topic>Mixed integer</topic><topic>multiagent deep reinforcement learning (MA-DRL)</topic><topic>Multiagent systems</topic><topic>Resource allocation</topic><topic>Resource management</topic><topic>Swarming</topic><topic>Task analysis</topic><topic>task offloading</topic><topic>Trajectory</topic><topic>Trajectory control</topic><topic>Trajectory optimization</topic><topic>Unmanned aerial vehicles</topic><toplevel>online_resources</toplevel><creatorcontrib>Morshed Alam, Muhammad</creatorcontrib><creatorcontrib>Moh, Sangman</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE internet of things journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Morshed Alam, Muhammad</au><au>Moh, Sangman</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Joint Optimization of Trajectory Control, Task Offloading, and Resource Allocation in Air-Ground Integrated Networks</atitle><jtitle>IEEE internet of things journal</jtitle><stitle>JIoT</stitle><date>2024-07-01</date><risdate>2024</risdate><volume>11</volume><issue>13</issue><spage>24273</spage><epage>24288</epage><pages>24273-24288</pages><issn>2327-4662</issn><eissn>2327-4662</eissn><coden>IITJAU</coden><abstract>In an air-ground integrated network (AGIN), low-altitude unmanned aerial vehicles (UAVs) and a high-altitude platform (HAP) operate synergistically to support computationally expensive and delay-critical applications of mobile ground devices (GDs). UAVs obtain tasks from GDs, execute the tasks, and offload some of the tasks to the HAP. In AGINs, the trajectory control of a UAV swarm should provide optimal coverage to randomly distributed mobile GDs. The limited resources of UAVs, such as energy, computation, caching, and bandwidth, result in further challenges. Therefore, a joint optimization problem is formulated in this study to minimize the task execution delay and energy consumption of UAVs by optimizing the UAV's trajectory, GD association, task-offloading ratio, and resource allocation. The limited resources, maximum task execution delay, task queue size, and mobility of UAVs are regarded as key constraints. Solving the problem is intricate owing to the complex mixed-integer nonlinear constraints coupled with a large continuous and discrete decision space. To track the dynamics in AGINs and efficiently solve the problem above, we utilize a swarming behavior-integrated multiagent gated recurrent unit-based actor and multihead attention-based critic network (SMA-GAC) framework. Results of simulative evaluation show that the proposed SMA-GAC outperforms baseline methods.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JIOT.2024.3390168</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-6280-7139</orcidid><orcidid>https://orcid.org/0000-0001-9175-3400</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2327-4662
ispartof IEEE internet of things journal, 2024-07, Vol.11 (13), p.24273-24288
issn 2327-4662
2327-4662
language eng
recordid cdi_crossref_primary_10_1109_JIOT_2024_3390168
source IEEE Electronic Library (IEL)
subjects Air-ground integrated networks (AGINs)
Autonomous aerial vehicles
Computation offloading
Delay
Delays
Energy consumption
High altitude
Internet of Things
joint optimization
Low altitude
Mixed integer
multiagent deep reinforcement learning (MA-DRL)
Multiagent systems
Resource allocation
Resource management
Swarming
Task analysis
task offloading
Trajectory
Trajectory control
Trajectory optimization
Unmanned aerial vehicles
title Joint Optimization of Trajectory Control, Task Offloading, and Resource Allocation in Air-Ground Integrated Networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T11%3A20%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Joint%20Optimization%20of%20Trajectory%20Control,%20Task%20Offloading,%20and%20Resource%20Allocation%20in%20Air-Ground%20Integrated%20Networks&rft.jtitle=IEEE%20internet%20of%20things%20journal&rft.au=Morshed%20Alam,%20Muhammad&rft.date=2024-07-01&rft.volume=11&rft.issue=13&rft.spage=24273&rft.epage=24288&rft.pages=24273-24288&rft.issn=2327-4662&rft.eissn=2327-4662&rft.coden=IITJAU&rft_id=info:doi/10.1109/JIOT.2024.3390168&rft_dat=%3Cproquest_RIE%3E3072327271%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3072327271&rft_id=info:pmid/&rft_ieee_id=10504534&rfr_iscdi=true