AiCareBreath: IoT-Enabled Location-Invariant Novel Unified Model for Predicting Air Pollutants to Avoid Related Respiratory Disease
This article presents a location-invariant air pollution prediction model with good geographic generalizability. The model uses a light GBR as part of a machine-learning framework to capture the spatial identification of air contaminants. Given the dynamic nature of air pollution, the model also use...
Gespeichert in:
Veröffentlicht in: | IEEE internet of things journal 2024-04, Vol.11 (8), p.14625-14633 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 14633 |
---|---|
container_issue | 8 |
container_start_page | 14625 |
container_title | IEEE internet of things journal |
container_volume | 11 |
creator | Borah, Jintu Kumar, Shashank Kumar, Nikhil Nadzir, Mohd Shahrul Mohd Cayetano, Mylene G. Ghayvat, Hemant Majumdar, Shubhankar Kumar, Neeraj |
description | This article presents a location-invariant air pollution prediction model with good geographic generalizability. The model uses a light GBR as part of a machine-learning framework to capture the spatial identification of air contaminants. Given the dynamic nature of air pollution, the model also uses a random forest to capture temporal dependencies in the data. Our model uses a transfer learning strategy to deal with location variability. The algorithm can learn concentration patterns because it has been trained on a vast data set of air quality measurements from various locations. The trained model is then improved using information from a particular target site, customizing it to the features of the target area. Experiments are carried out on a comprehensive data set containing air pollution measurements from various places to assess the efficacy of the proposed model. The recommended method performs better than standard models at forecasting air pollution levels, proving its dependability in various geographical settings. An interpretability analysis is also performed to learn about the variables affecting air pollution levels. We identify the geographical patterns associated with high-pollutant concentrations by visualizing the learned representations within the model, giving important information for environmental planning and mitigation methods. The observations show that the model outperforms state-of-the-art forecasting based on recurrent neural network and transformer-based models. The suggested methodology for forecasting air contaminants has the potential to improve air quality management and aid in decision-making across numerous regions. This helps safeguard the environment and public health by creating more precise and dependable air pollution forecast systems. |
doi_str_mv | 10.1109/JIOT.2023.3342872 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JIOT_2023_3342872</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10363642</ieee_id><sourcerecordid>3035273721</sourcerecordid><originalsourceid>FETCH-LOGICAL-c332t-da60556f9ad308bea35d2c9de5d833b702c14b8354d816f83ea6ec4be8bf68f03</originalsourceid><addsrcrecordid>eNpNkU9LxDAQxYsoKOoHEDwEPHdNMm3a9VbXVVfWP8jqNaTNVCO1WZN0xbNf3Cwr4mnmwe89hnlJcsToiDE6Pr2Z3S9GnHIYAWS8LPhWsseBF2kmBN_-t-8mh96_UUqjLWdjsZd8V2aiHJ47VOH1jMzsIp32qu5Qk7ltVDC2T2f9Sjmj-kDu7Ao78tSb1kTg1uqoWuvIg0NtmmD6F1KZKG3XDSEaPAmWVCtrNHnETgVcT780TgXrvsiF8ag8HiQ7reo8Hv7O_eTpcrqYXKfz-6vZpJqnDQAPqVaC5rlox0oDLWtUkGvejDXmugSoC8obltUl5JkumWhLQCWwyWos61aULYX9JN3k-k9cDrVcOvOu3Je0ysgL81xJ615k1w-SxR-yLPInG37p7MeAPsg3O7g-niiBQs4LKDiLFNtQjbPeO2z_chmV63rkuh65rkf-1hM9xxuPQcR_PAgQGYcfixKM8w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3035273721</pqid></control><display><type>article</type><title>AiCareBreath: IoT-Enabled Location-Invariant Novel Unified Model for Predicting Air Pollutants to Avoid Related Respiratory Disease</title><source>IEEE Electronic Library (IEL)</source><creator>Borah, Jintu ; Kumar, Shashank ; Kumar, Nikhil ; Nadzir, Mohd Shahrul Mohd ; Cayetano, Mylene G. ; Ghayvat, Hemant ; Majumdar, Shubhankar ; Kumar, Neeraj</creator><creatorcontrib>Borah, Jintu ; Kumar, Shashank ; Kumar, Nikhil ; Nadzir, Mohd Shahrul Mohd ; Cayetano, Mylene G. ; Ghayvat, Hemant ; Majumdar, Shubhankar ; Kumar, Neeraj</creatorcontrib><description>This article presents a location-invariant air pollution prediction model with good geographic generalizability. The model uses a light GBR as part of a machine-learning framework to capture the spatial identification of air contaminants. Given the dynamic nature of air pollution, the model also uses a random forest to capture temporal dependencies in the data. Our model uses a transfer learning strategy to deal with location variability. The algorithm can learn concentration patterns because it has been trained on a vast data set of air quality measurements from various locations. The trained model is then improved using information from a particular target site, customizing it to the features of the target area. Experiments are carried out on a comprehensive data set containing air pollution measurements from various places to assess the efficacy of the proposed model. The recommended method performs better than standard models at forecasting air pollution levels, proving its dependability in various geographical settings. An interpretability analysis is also performed to learn about the variables affecting air pollution levels. We identify the geographical patterns associated with high-pollutant concentrations by visualizing the learned representations within the model, giving important information for environmental planning and mitigation methods. The observations show that the model outperforms state-of-the-art forecasting based on recurrent neural network and transformer-based models. The suggested methodology for forecasting air contaminants has the potential to improve air quality management and aid in decision-making across numerous regions. This helps safeguard the environment and public health by creating more precise and dependable air pollution forecast systems.</description><identifier>ISSN: 2327-4662</identifier><identifier>EISSN: 2327-4662</identifier><identifier>DOI: 10.1109/JIOT.2023.3342872</identifier><identifier>CODEN: IITJAU</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Air pollution ; Air quality ; Algorithms ; Atmospheric modeling ; Computer and Information Sciences Computer Science ; Contaminants ; Data models ; Data- och informationsvetenskap ; Datasets ; Decision trees ; Deep learning ; Forecasting ; Internet of Things ; Invariants ; light GBM ; Machine learning ; Mathematical models ; Outdoor air quality ; Pollutants ; Pollution levels ; Prediction models ; Predictive models ; Public health ; pyCaret ; Quality management ; random forest (RF) ; Recurrent neural networks ; Respiratory diseases ; Time series analysis</subject><ispartof>IEEE internet of things journal, 2024-04, Vol.11 (8), p.14625-14633</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c332t-da60556f9ad308bea35d2c9de5d833b702c14b8354d816f83ea6ec4be8bf68f03</citedby><cites>FETCH-LOGICAL-c332t-da60556f9ad308bea35d2c9de5d833b702c14b8354d816f83ea6ec4be8bf68f03</cites><orcidid>0000-0002-5491-0216 ; 0000-0002-3703-4904 ; 0000-0002-3020-3947 ; 0000-0002-1166-9397</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10363642$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,796,885,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10363642$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-128714$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Borah, Jintu</creatorcontrib><creatorcontrib>Kumar, Shashank</creatorcontrib><creatorcontrib>Kumar, Nikhil</creatorcontrib><creatorcontrib>Nadzir, Mohd Shahrul Mohd</creatorcontrib><creatorcontrib>Cayetano, Mylene G.</creatorcontrib><creatorcontrib>Ghayvat, Hemant</creatorcontrib><creatorcontrib>Majumdar, Shubhankar</creatorcontrib><creatorcontrib>Kumar, Neeraj</creatorcontrib><title>AiCareBreath: IoT-Enabled Location-Invariant Novel Unified Model for Predicting Air Pollutants to Avoid Related Respiratory Disease</title><title>IEEE internet of things journal</title><addtitle>JIoT</addtitle><description>This article presents a location-invariant air pollution prediction model with good geographic generalizability. The model uses a light GBR as part of a machine-learning framework to capture the spatial identification of air contaminants. Given the dynamic nature of air pollution, the model also uses a random forest to capture temporal dependencies in the data. Our model uses a transfer learning strategy to deal with location variability. The algorithm can learn concentration patterns because it has been trained on a vast data set of air quality measurements from various locations. The trained model is then improved using information from a particular target site, customizing it to the features of the target area. Experiments are carried out on a comprehensive data set containing air pollution measurements from various places to assess the efficacy of the proposed model. The recommended method performs better than standard models at forecasting air pollution levels, proving its dependability in various geographical settings. An interpretability analysis is also performed to learn about the variables affecting air pollution levels. We identify the geographical patterns associated with high-pollutant concentrations by visualizing the learned representations within the model, giving important information for environmental planning and mitigation methods. The observations show that the model outperforms state-of-the-art forecasting based on recurrent neural network and transformer-based models. The suggested methodology for forecasting air contaminants has the potential to improve air quality management and aid in decision-making across numerous regions. This helps safeguard the environment and public health by creating more precise and dependable air pollution forecast systems.</description><subject>Air pollution</subject><subject>Air quality</subject><subject>Algorithms</subject><subject>Atmospheric modeling</subject><subject>Computer and Information Sciences Computer Science</subject><subject>Contaminants</subject><subject>Data models</subject><subject>Data- och informationsvetenskap</subject><subject>Datasets</subject><subject>Decision trees</subject><subject>Deep learning</subject><subject>Forecasting</subject><subject>Internet of Things</subject><subject>Invariants</subject><subject>light GBM</subject><subject>Machine learning</subject><subject>Mathematical models</subject><subject>Outdoor air quality</subject><subject>Pollutants</subject><subject>Pollution levels</subject><subject>Prediction models</subject><subject>Predictive models</subject><subject>Public health</subject><subject>pyCaret</subject><subject>Quality management</subject><subject>random forest (RF)</subject><subject>Recurrent neural networks</subject><subject>Respiratory diseases</subject><subject>Time series analysis</subject><issn>2327-4662</issn><issn>2327-4662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkU9LxDAQxYsoKOoHEDwEPHdNMm3a9VbXVVfWP8jqNaTNVCO1WZN0xbNf3Cwr4mnmwe89hnlJcsToiDE6Pr2Z3S9GnHIYAWS8LPhWsseBF2kmBN_-t-8mh96_UUqjLWdjsZd8V2aiHJ47VOH1jMzsIp32qu5Qk7ltVDC2T2f9Sjmj-kDu7Ao78tSb1kTg1uqoWuvIg0NtmmD6F1KZKG3XDSEaPAmWVCtrNHnETgVcT780TgXrvsiF8ag8HiQ7reo8Hv7O_eTpcrqYXKfz-6vZpJqnDQAPqVaC5rlox0oDLWtUkGvejDXmugSoC8obltUl5JkumWhLQCWwyWos61aULYX9JN3k-k9cDrVcOvOu3Je0ysgL81xJ615k1w-SxR-yLPInG37p7MeAPsg3O7g-niiBQs4LKDiLFNtQjbPeO2z_chmV63rkuh65rkf-1hM9xxuPQcR_PAgQGYcfixKM8w</recordid><startdate>20240415</startdate><enddate>20240415</enddate><creator>Borah, Jintu</creator><creator>Kumar, Shashank</creator><creator>Kumar, Nikhil</creator><creator>Nadzir, Mohd Shahrul Mohd</creator><creator>Cayetano, Mylene G.</creator><creator>Ghayvat, Hemant</creator><creator>Majumdar, Shubhankar</creator><creator>Kumar, Neeraj</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D92</scope><orcidid>https://orcid.org/0000-0002-5491-0216</orcidid><orcidid>https://orcid.org/0000-0002-3703-4904</orcidid><orcidid>https://orcid.org/0000-0002-3020-3947</orcidid><orcidid>https://orcid.org/0000-0002-1166-9397</orcidid></search><sort><creationdate>20240415</creationdate><title>AiCareBreath: IoT-Enabled Location-Invariant Novel Unified Model for Predicting Air Pollutants to Avoid Related Respiratory Disease</title><author>Borah, Jintu ; Kumar, Shashank ; Kumar, Nikhil ; Nadzir, Mohd Shahrul Mohd ; Cayetano, Mylene G. ; Ghayvat, Hemant ; Majumdar, Shubhankar ; Kumar, Neeraj</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c332t-da60556f9ad308bea35d2c9de5d833b702c14b8354d816f83ea6ec4be8bf68f03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Air pollution</topic><topic>Air quality</topic><topic>Algorithms</topic><topic>Atmospheric modeling</topic><topic>Computer and Information Sciences Computer Science</topic><topic>Contaminants</topic><topic>Data models</topic><topic>Data- och informationsvetenskap</topic><topic>Datasets</topic><topic>Decision trees</topic><topic>Deep learning</topic><topic>Forecasting</topic><topic>Internet of Things</topic><topic>Invariants</topic><topic>light GBM</topic><topic>Machine learning</topic><topic>Mathematical models</topic><topic>Outdoor air quality</topic><topic>Pollutants</topic><topic>Pollution levels</topic><topic>Prediction models</topic><topic>Predictive models</topic><topic>Public health</topic><topic>pyCaret</topic><topic>Quality management</topic><topic>random forest (RF)</topic><topic>Recurrent neural networks</topic><topic>Respiratory diseases</topic><topic>Time series analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Borah, Jintu</creatorcontrib><creatorcontrib>Kumar, Shashank</creatorcontrib><creatorcontrib>Kumar, Nikhil</creatorcontrib><creatorcontrib>Nadzir, Mohd Shahrul Mohd</creatorcontrib><creatorcontrib>Cayetano, Mylene G.</creatorcontrib><creatorcontrib>Ghayvat, Hemant</creatorcontrib><creatorcontrib>Majumdar, Shubhankar</creatorcontrib><creatorcontrib>Kumar, Neeraj</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Linnéuniversitetet</collection><jtitle>IEEE internet of things journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Borah, Jintu</au><au>Kumar, Shashank</au><au>Kumar, Nikhil</au><au>Nadzir, Mohd Shahrul Mohd</au><au>Cayetano, Mylene G.</au><au>Ghayvat, Hemant</au><au>Majumdar, Shubhankar</au><au>Kumar, Neeraj</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>AiCareBreath: IoT-Enabled Location-Invariant Novel Unified Model for Predicting Air Pollutants to Avoid Related Respiratory Disease</atitle><jtitle>IEEE internet of things journal</jtitle><stitle>JIoT</stitle><date>2024-04-15</date><risdate>2024</risdate><volume>11</volume><issue>8</issue><spage>14625</spage><epage>14633</epage><pages>14625-14633</pages><issn>2327-4662</issn><eissn>2327-4662</eissn><coden>IITJAU</coden><abstract>This article presents a location-invariant air pollution prediction model with good geographic generalizability. The model uses a light GBR as part of a machine-learning framework to capture the spatial identification of air contaminants. Given the dynamic nature of air pollution, the model also uses a random forest to capture temporal dependencies in the data. Our model uses a transfer learning strategy to deal with location variability. The algorithm can learn concentration patterns because it has been trained on a vast data set of air quality measurements from various locations. The trained model is then improved using information from a particular target site, customizing it to the features of the target area. Experiments are carried out on a comprehensive data set containing air pollution measurements from various places to assess the efficacy of the proposed model. The recommended method performs better than standard models at forecasting air pollution levels, proving its dependability in various geographical settings. An interpretability analysis is also performed to learn about the variables affecting air pollution levels. We identify the geographical patterns associated with high-pollutant concentrations by visualizing the learned representations within the model, giving important information for environmental planning and mitigation methods. The observations show that the model outperforms state-of-the-art forecasting based on recurrent neural network and transformer-based models. The suggested methodology for forecasting air contaminants has the potential to improve air quality management and aid in decision-making across numerous regions. This helps safeguard the environment and public health by creating more precise and dependable air pollution forecast systems.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JIOT.2023.3342872</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-5491-0216</orcidid><orcidid>https://orcid.org/0000-0002-3703-4904</orcidid><orcidid>https://orcid.org/0000-0002-3020-3947</orcidid><orcidid>https://orcid.org/0000-0002-1166-9397</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2327-4662 |
ispartof | IEEE internet of things journal, 2024-04, Vol.11 (8), p.14625-14633 |
issn | 2327-4662 2327-4662 |
language | eng |
recordid | cdi_crossref_primary_10_1109_JIOT_2023_3342872 |
source | IEEE Electronic Library (IEL) |
subjects | Air pollution Air quality Algorithms Atmospheric modeling Computer and Information Sciences Computer Science Contaminants Data models Data- och informationsvetenskap Datasets Decision trees Deep learning Forecasting Internet of Things Invariants light GBM Machine learning Mathematical models Outdoor air quality Pollutants Pollution levels Prediction models Predictive models Public health pyCaret Quality management random forest (RF) Recurrent neural networks Respiratory diseases Time series analysis |
title | AiCareBreath: IoT-Enabled Location-Invariant Novel Unified Model for Predicting Air Pollutants to Avoid Related Respiratory Disease |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T17%3A06%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=AiCareBreath:%20IoT-Enabled%20Location-Invariant%20Novel%20Unified%20Model%20for%20Predicting%20Air%20Pollutants%20to%20Avoid%20Related%20Respiratory%20Disease&rft.jtitle=IEEE%20internet%20of%20things%20journal&rft.au=Borah,%20Jintu&rft.date=2024-04-15&rft.volume=11&rft.issue=8&rft.spage=14625&rft.epage=14633&rft.pages=14625-14633&rft.issn=2327-4662&rft.eissn=2327-4662&rft.coden=IITJAU&rft_id=info:doi/10.1109/JIOT.2023.3342872&rft_dat=%3Cproquest_RIE%3E3035273721%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3035273721&rft_id=info:pmid/&rft_ieee_id=10363642&rfr_iscdi=true |