AiCareBreath: IoT-Enabled Location-Invariant Novel Unified Model for Predicting Air Pollutants to Avoid Related Respiratory Disease

This article presents a location-invariant air pollution prediction model with good geographic generalizability. The model uses a light GBR as part of a machine-learning framework to capture the spatial identification of air contaminants. Given the dynamic nature of air pollution, the model also use...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE internet of things journal 2024-04, Vol.11 (8), p.14625-14633
Hauptverfasser: Borah, Jintu, Kumar, Shashank, Kumar, Nikhil, Nadzir, Mohd Shahrul Mohd, Cayetano, Mylene G., Ghayvat, Hemant, Majumdar, Shubhankar, Kumar, Neeraj
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 14633
container_issue 8
container_start_page 14625
container_title IEEE internet of things journal
container_volume 11
creator Borah, Jintu
Kumar, Shashank
Kumar, Nikhil
Nadzir, Mohd Shahrul Mohd
Cayetano, Mylene G.
Ghayvat, Hemant
Majumdar, Shubhankar
Kumar, Neeraj
description This article presents a location-invariant air pollution prediction model with good geographic generalizability. The model uses a light GBR as part of a machine-learning framework to capture the spatial identification of air contaminants. Given the dynamic nature of air pollution, the model also uses a random forest to capture temporal dependencies in the data. Our model uses a transfer learning strategy to deal with location variability. The algorithm can learn concentration patterns because it has been trained on a vast data set of air quality measurements from various locations. The trained model is then improved using information from a particular target site, customizing it to the features of the target area. Experiments are carried out on a comprehensive data set containing air pollution measurements from various places to assess the efficacy of the proposed model. The recommended method performs better than standard models at forecasting air pollution levels, proving its dependability in various geographical settings. An interpretability analysis is also performed to learn about the variables affecting air pollution levels. We identify the geographical patterns associated with high-pollutant concentrations by visualizing the learned representations within the model, giving important information for environmental planning and mitigation methods. The observations show that the model outperforms state-of-the-art forecasting based on recurrent neural network and transformer-based models. The suggested methodology for forecasting air contaminants has the potential to improve air quality management and aid in decision-making across numerous regions. This helps safeguard the environment and public health by creating more precise and dependable air pollution forecast systems.
doi_str_mv 10.1109/JIOT.2023.3342872
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JIOT_2023_3342872</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10363642</ieee_id><sourcerecordid>3035273721</sourcerecordid><originalsourceid>FETCH-LOGICAL-c332t-da60556f9ad308bea35d2c9de5d833b702c14b8354d816f83ea6ec4be8bf68f03</originalsourceid><addsrcrecordid>eNpNkU9LxDAQxYsoKOoHEDwEPHdNMm3a9VbXVVfWP8jqNaTNVCO1WZN0xbNf3Cwr4mnmwe89hnlJcsToiDE6Pr2Z3S9GnHIYAWS8LPhWsseBF2kmBN_-t-8mh96_UUqjLWdjsZd8V2aiHJ47VOH1jMzsIp32qu5Qk7ltVDC2T2f9Sjmj-kDu7Ao78tSb1kTg1uqoWuvIg0NtmmD6F1KZKG3XDSEaPAmWVCtrNHnETgVcT780TgXrvsiF8ag8HiQ7reo8Hv7O_eTpcrqYXKfz-6vZpJqnDQAPqVaC5rlox0oDLWtUkGvejDXmugSoC8obltUl5JkumWhLQCWwyWos61aULYX9JN3k-k9cDrVcOvOu3Je0ysgL81xJ615k1w-SxR-yLPInG37p7MeAPsg3O7g-niiBQs4LKDiLFNtQjbPeO2z_chmV63rkuh65rkf-1hM9xxuPQcR_PAgQGYcfixKM8w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3035273721</pqid></control><display><type>article</type><title>AiCareBreath: IoT-Enabled Location-Invariant Novel Unified Model for Predicting Air Pollutants to Avoid Related Respiratory Disease</title><source>IEEE Electronic Library (IEL)</source><creator>Borah, Jintu ; Kumar, Shashank ; Kumar, Nikhil ; Nadzir, Mohd Shahrul Mohd ; Cayetano, Mylene G. ; Ghayvat, Hemant ; Majumdar, Shubhankar ; Kumar, Neeraj</creator><creatorcontrib>Borah, Jintu ; Kumar, Shashank ; Kumar, Nikhil ; Nadzir, Mohd Shahrul Mohd ; Cayetano, Mylene G. ; Ghayvat, Hemant ; Majumdar, Shubhankar ; Kumar, Neeraj</creatorcontrib><description>This article presents a location-invariant air pollution prediction model with good geographic generalizability. The model uses a light GBR as part of a machine-learning framework to capture the spatial identification of air contaminants. Given the dynamic nature of air pollution, the model also uses a random forest to capture temporal dependencies in the data. Our model uses a transfer learning strategy to deal with location variability. The algorithm can learn concentration patterns because it has been trained on a vast data set of air quality measurements from various locations. The trained model is then improved using information from a particular target site, customizing it to the features of the target area. Experiments are carried out on a comprehensive data set containing air pollution measurements from various places to assess the efficacy of the proposed model. The recommended method performs better than standard models at forecasting air pollution levels, proving its dependability in various geographical settings. An interpretability analysis is also performed to learn about the variables affecting air pollution levels. We identify the geographical patterns associated with high-pollutant concentrations by visualizing the learned representations within the model, giving important information for environmental planning and mitigation methods. The observations show that the model outperforms state-of-the-art forecasting based on recurrent neural network and transformer-based models. The suggested methodology for forecasting air contaminants has the potential to improve air quality management and aid in decision-making across numerous regions. This helps safeguard the environment and public health by creating more precise and dependable air pollution forecast systems.</description><identifier>ISSN: 2327-4662</identifier><identifier>EISSN: 2327-4662</identifier><identifier>DOI: 10.1109/JIOT.2023.3342872</identifier><identifier>CODEN: IITJAU</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Air pollution ; Air quality ; Algorithms ; Atmospheric modeling ; Computer and Information Sciences Computer Science ; Contaminants ; Data models ; Data- och informationsvetenskap ; Datasets ; Decision trees ; Deep learning ; Forecasting ; Internet of Things ; Invariants ; light GBM ; Machine learning ; Mathematical models ; Outdoor air quality ; Pollutants ; Pollution levels ; Prediction models ; Predictive models ; Public health ; pyCaret ; Quality management ; random forest (RF) ; Recurrent neural networks ; Respiratory diseases ; Time series analysis</subject><ispartof>IEEE internet of things journal, 2024-04, Vol.11 (8), p.14625-14633</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c332t-da60556f9ad308bea35d2c9de5d833b702c14b8354d816f83ea6ec4be8bf68f03</citedby><cites>FETCH-LOGICAL-c332t-da60556f9ad308bea35d2c9de5d833b702c14b8354d816f83ea6ec4be8bf68f03</cites><orcidid>0000-0002-5491-0216 ; 0000-0002-3703-4904 ; 0000-0002-3020-3947 ; 0000-0002-1166-9397</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10363642$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,796,885,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10363642$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-128714$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Borah, Jintu</creatorcontrib><creatorcontrib>Kumar, Shashank</creatorcontrib><creatorcontrib>Kumar, Nikhil</creatorcontrib><creatorcontrib>Nadzir, Mohd Shahrul Mohd</creatorcontrib><creatorcontrib>Cayetano, Mylene G.</creatorcontrib><creatorcontrib>Ghayvat, Hemant</creatorcontrib><creatorcontrib>Majumdar, Shubhankar</creatorcontrib><creatorcontrib>Kumar, Neeraj</creatorcontrib><title>AiCareBreath: IoT-Enabled Location-Invariant Novel Unified Model for Predicting Air Pollutants to Avoid Related Respiratory Disease</title><title>IEEE internet of things journal</title><addtitle>JIoT</addtitle><description>This article presents a location-invariant air pollution prediction model with good geographic generalizability. The model uses a light GBR as part of a machine-learning framework to capture the spatial identification of air contaminants. Given the dynamic nature of air pollution, the model also uses a random forest to capture temporal dependencies in the data. Our model uses a transfer learning strategy to deal with location variability. The algorithm can learn concentration patterns because it has been trained on a vast data set of air quality measurements from various locations. The trained model is then improved using information from a particular target site, customizing it to the features of the target area. Experiments are carried out on a comprehensive data set containing air pollution measurements from various places to assess the efficacy of the proposed model. The recommended method performs better than standard models at forecasting air pollution levels, proving its dependability in various geographical settings. An interpretability analysis is also performed to learn about the variables affecting air pollution levels. We identify the geographical patterns associated with high-pollutant concentrations by visualizing the learned representations within the model, giving important information for environmental planning and mitigation methods. The observations show that the model outperforms state-of-the-art forecasting based on recurrent neural network and transformer-based models. The suggested methodology for forecasting air contaminants has the potential to improve air quality management and aid in decision-making across numerous regions. This helps safeguard the environment and public health by creating more precise and dependable air pollution forecast systems.</description><subject>Air pollution</subject><subject>Air quality</subject><subject>Algorithms</subject><subject>Atmospheric modeling</subject><subject>Computer and Information Sciences Computer Science</subject><subject>Contaminants</subject><subject>Data models</subject><subject>Data- och informationsvetenskap</subject><subject>Datasets</subject><subject>Decision trees</subject><subject>Deep learning</subject><subject>Forecasting</subject><subject>Internet of Things</subject><subject>Invariants</subject><subject>light GBM</subject><subject>Machine learning</subject><subject>Mathematical models</subject><subject>Outdoor air quality</subject><subject>Pollutants</subject><subject>Pollution levels</subject><subject>Prediction models</subject><subject>Predictive models</subject><subject>Public health</subject><subject>pyCaret</subject><subject>Quality management</subject><subject>random forest (RF)</subject><subject>Recurrent neural networks</subject><subject>Respiratory diseases</subject><subject>Time series analysis</subject><issn>2327-4662</issn><issn>2327-4662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkU9LxDAQxYsoKOoHEDwEPHdNMm3a9VbXVVfWP8jqNaTNVCO1WZN0xbNf3Cwr4mnmwe89hnlJcsToiDE6Pr2Z3S9GnHIYAWS8LPhWsseBF2kmBN_-t-8mh96_UUqjLWdjsZd8V2aiHJ47VOH1jMzsIp32qu5Qk7ltVDC2T2f9Sjmj-kDu7Ao78tSb1kTg1uqoWuvIg0NtmmD6F1KZKG3XDSEaPAmWVCtrNHnETgVcT780TgXrvsiF8ag8HiQ7reo8Hv7O_eTpcrqYXKfz-6vZpJqnDQAPqVaC5rlox0oDLWtUkGvejDXmugSoC8obltUl5JkumWhLQCWwyWos61aULYX9JN3k-k9cDrVcOvOu3Je0ysgL81xJ615k1w-SxR-yLPInG37p7MeAPsg3O7g-niiBQs4LKDiLFNtQjbPeO2z_chmV63rkuh65rkf-1hM9xxuPQcR_PAgQGYcfixKM8w</recordid><startdate>20240415</startdate><enddate>20240415</enddate><creator>Borah, Jintu</creator><creator>Kumar, Shashank</creator><creator>Kumar, Nikhil</creator><creator>Nadzir, Mohd Shahrul Mohd</creator><creator>Cayetano, Mylene G.</creator><creator>Ghayvat, Hemant</creator><creator>Majumdar, Shubhankar</creator><creator>Kumar, Neeraj</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D92</scope><orcidid>https://orcid.org/0000-0002-5491-0216</orcidid><orcidid>https://orcid.org/0000-0002-3703-4904</orcidid><orcidid>https://orcid.org/0000-0002-3020-3947</orcidid><orcidid>https://orcid.org/0000-0002-1166-9397</orcidid></search><sort><creationdate>20240415</creationdate><title>AiCareBreath: IoT-Enabled Location-Invariant Novel Unified Model for Predicting Air Pollutants to Avoid Related Respiratory Disease</title><author>Borah, Jintu ; Kumar, Shashank ; Kumar, Nikhil ; Nadzir, Mohd Shahrul Mohd ; Cayetano, Mylene G. ; Ghayvat, Hemant ; Majumdar, Shubhankar ; Kumar, Neeraj</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c332t-da60556f9ad308bea35d2c9de5d833b702c14b8354d816f83ea6ec4be8bf68f03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Air pollution</topic><topic>Air quality</topic><topic>Algorithms</topic><topic>Atmospheric modeling</topic><topic>Computer and Information Sciences Computer Science</topic><topic>Contaminants</topic><topic>Data models</topic><topic>Data- och informationsvetenskap</topic><topic>Datasets</topic><topic>Decision trees</topic><topic>Deep learning</topic><topic>Forecasting</topic><topic>Internet of Things</topic><topic>Invariants</topic><topic>light GBM</topic><topic>Machine learning</topic><topic>Mathematical models</topic><topic>Outdoor air quality</topic><topic>Pollutants</topic><topic>Pollution levels</topic><topic>Prediction models</topic><topic>Predictive models</topic><topic>Public health</topic><topic>pyCaret</topic><topic>Quality management</topic><topic>random forest (RF)</topic><topic>Recurrent neural networks</topic><topic>Respiratory diseases</topic><topic>Time series analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Borah, Jintu</creatorcontrib><creatorcontrib>Kumar, Shashank</creatorcontrib><creatorcontrib>Kumar, Nikhil</creatorcontrib><creatorcontrib>Nadzir, Mohd Shahrul Mohd</creatorcontrib><creatorcontrib>Cayetano, Mylene G.</creatorcontrib><creatorcontrib>Ghayvat, Hemant</creatorcontrib><creatorcontrib>Majumdar, Shubhankar</creatorcontrib><creatorcontrib>Kumar, Neeraj</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Linnéuniversitetet</collection><jtitle>IEEE internet of things journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Borah, Jintu</au><au>Kumar, Shashank</au><au>Kumar, Nikhil</au><au>Nadzir, Mohd Shahrul Mohd</au><au>Cayetano, Mylene G.</au><au>Ghayvat, Hemant</au><au>Majumdar, Shubhankar</au><au>Kumar, Neeraj</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>AiCareBreath: IoT-Enabled Location-Invariant Novel Unified Model for Predicting Air Pollutants to Avoid Related Respiratory Disease</atitle><jtitle>IEEE internet of things journal</jtitle><stitle>JIoT</stitle><date>2024-04-15</date><risdate>2024</risdate><volume>11</volume><issue>8</issue><spage>14625</spage><epage>14633</epage><pages>14625-14633</pages><issn>2327-4662</issn><eissn>2327-4662</eissn><coden>IITJAU</coden><abstract>This article presents a location-invariant air pollution prediction model with good geographic generalizability. The model uses a light GBR as part of a machine-learning framework to capture the spatial identification of air contaminants. Given the dynamic nature of air pollution, the model also uses a random forest to capture temporal dependencies in the data. Our model uses a transfer learning strategy to deal with location variability. The algorithm can learn concentration patterns because it has been trained on a vast data set of air quality measurements from various locations. The trained model is then improved using information from a particular target site, customizing it to the features of the target area. Experiments are carried out on a comprehensive data set containing air pollution measurements from various places to assess the efficacy of the proposed model. The recommended method performs better than standard models at forecasting air pollution levels, proving its dependability in various geographical settings. An interpretability analysis is also performed to learn about the variables affecting air pollution levels. We identify the geographical patterns associated with high-pollutant concentrations by visualizing the learned representations within the model, giving important information for environmental planning and mitigation methods. The observations show that the model outperforms state-of-the-art forecasting based on recurrent neural network and transformer-based models. The suggested methodology for forecasting air contaminants has the potential to improve air quality management and aid in decision-making across numerous regions. This helps safeguard the environment and public health by creating more precise and dependable air pollution forecast systems.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JIOT.2023.3342872</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-5491-0216</orcidid><orcidid>https://orcid.org/0000-0002-3703-4904</orcidid><orcidid>https://orcid.org/0000-0002-3020-3947</orcidid><orcidid>https://orcid.org/0000-0002-1166-9397</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2327-4662
ispartof IEEE internet of things journal, 2024-04, Vol.11 (8), p.14625-14633
issn 2327-4662
2327-4662
language eng
recordid cdi_crossref_primary_10_1109_JIOT_2023_3342872
source IEEE Electronic Library (IEL)
subjects Air pollution
Air quality
Algorithms
Atmospheric modeling
Computer and Information Sciences Computer Science
Contaminants
Data models
Data- och informationsvetenskap
Datasets
Decision trees
Deep learning
Forecasting
Internet of Things
Invariants
light GBM
Machine learning
Mathematical models
Outdoor air quality
Pollutants
Pollution levels
Prediction models
Predictive models
Public health
pyCaret
Quality management
random forest (RF)
Recurrent neural networks
Respiratory diseases
Time series analysis
title AiCareBreath: IoT-Enabled Location-Invariant Novel Unified Model for Predicting Air Pollutants to Avoid Related Respiratory Disease
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T17%3A06%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=AiCareBreath:%20IoT-Enabled%20Location-Invariant%20Novel%20Unified%20Model%20for%20Predicting%20Air%20Pollutants%20to%20Avoid%20Related%20Respiratory%20Disease&rft.jtitle=IEEE%20internet%20of%20things%20journal&rft.au=Borah,%20Jintu&rft.date=2024-04-15&rft.volume=11&rft.issue=8&rft.spage=14625&rft.epage=14633&rft.pages=14625-14633&rft.issn=2327-4662&rft.eissn=2327-4662&rft.coden=IITJAU&rft_id=info:doi/10.1109/JIOT.2023.3342872&rft_dat=%3Cproquest_RIE%3E3035273721%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3035273721&rft_id=info:pmid/&rft_ieee_id=10363642&rfr_iscdi=true