Covert mmWave Communications with Finite Blocklength Against Spatially Random Wardens
In this paper, we investigate covert millimeter wave (mmWave) communications with finite blocklength, where a multi-antenna transmitter sends covert messages to a legitimate receiver in the presence of spatially random wardens. Both the phase array (PA) and linear frequency diverse array (LFDA) beam...
Gespeichert in:
Veröffentlicht in: | IEEE internet of things journal 2024-01, Vol.11 (2), p.1-1 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1 |
---|---|
container_issue | 2 |
container_start_page | 1 |
container_title | IEEE internet of things journal |
container_volume | 11 |
creator | Ma, Ruiqian Yang, Weiwei Guan, Xinrong Lu, Xingbo Song, Yi Chen, Dechuan |
description | In this paper, we investigate covert millimeter wave (mmWave) communications with finite blocklength, where a multi-antenna transmitter sends covert messages to a legitimate receiver in the presence of spatially random wardens. Both the phase array (PA) and linear frequency diverse array (LFDA) beamforming schemes, which are designed to maximize the antenna gain from the transmitter to the legitimate receiver, are investigated to improve the covert communication performance. First, the novel expressions of covert communication constraint and average effective covert throughput (AECT) are derived for both beamforming schemes. Then, taking into account the constraint of maximal available blocklength, the optimal transmit power and blocklength are determined for maximizing the AECT. Typically, comparing to the benchmark with fixed blocklength, the enhancement of AECT by utilizing the optimized blocklength enlarges as the density of wardens increases. In addition, it is observed that increasing the maximal available blocklength cannot always improve the maximum AECT due to the trade-off between the transmit power and blocklength. Furthermore, it is shown that the maximum AECT varies for different directions of the legitimate receiver under both the beamforming schemes, and the transmitter can adaptively choose the PA or LFDA beamforming scheme to improve the covertness performance against spatially random wardens. |
doi_str_mv | 10.1109/JIOT.2023.3296414 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JIOT_2023_3296414</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10185203</ieee_id><sourcerecordid>2912943036</sourcerecordid><originalsourceid>FETCH-LOGICAL-c294t-244b51ee15ab97de4ed9ef43ea51dca9b06d083a7d2d67650d3b6d760c4f5cb3</originalsourceid><addsrcrecordid>eNpNkE1rAjEQhkNpoWL9AYUeAj1r87VZc7RLbS2C0Fo8huxm1sbubmyyWvz3XdGDpxmG550XHoTuKRlRStTT-2yxHDHC-IgzJQUVV6jHOEuHQkp2fbHfokGMG0JIF0uokj30lfk9hBbX9crsAWe-rneNK0zrfBPxn2u_8dQ1rgX8XPnip4Jm3Z0ma-Oa2OLPbQeaqjrgD9NYX-OVCRaaeIduSlNFGJxnHy2nL8vsbThfvM6yyXxYMCXaIRMiTygATUyuUgsCrIJScDAJtYVROZGWjLlJLbMylQmxPJc2laQQZVLkvI8eT2-3wf_uILZ643eh6Ro1U7Sr4ITLjqInqgg-xgCl3gZXm3DQlOijP330p4_-9Nlfl3k4ZRwAXPB0nDDC-T9PFGzb</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2912943036</pqid></control><display><type>article</type><title>Covert mmWave Communications with Finite Blocklength Against Spatially Random Wardens</title><source>IEEE Electronic Library (IEL)</source><creator>Ma, Ruiqian ; Yang, Weiwei ; Guan, Xinrong ; Lu, Xingbo ; Song, Yi ; Chen, Dechuan</creator><creatorcontrib>Ma, Ruiqian ; Yang, Weiwei ; Guan, Xinrong ; Lu, Xingbo ; Song, Yi ; Chen, Dechuan</creatorcontrib><description>In this paper, we investigate covert millimeter wave (mmWave) communications with finite blocklength, where a multi-antenna transmitter sends covert messages to a legitimate receiver in the presence of spatially random wardens. Both the phase array (PA) and linear frequency diverse array (LFDA) beamforming schemes, which are designed to maximize the antenna gain from the transmitter to the legitimate receiver, are investigated to improve the covert communication performance. First, the novel expressions of covert communication constraint and average effective covert throughput (AECT) are derived for both beamforming schemes. Then, taking into account the constraint of maximal available blocklength, the optimal transmit power and blocklength are determined for maximizing the AECT. Typically, comparing to the benchmark with fixed blocklength, the enhancement of AECT by utilizing the optimized blocklength enlarges as the density of wardens increases. In addition, it is observed that increasing the maximal available blocklength cannot always improve the maximum AECT due to the trade-off between the transmit power and blocklength. Furthermore, it is shown that the maximum AECT varies for different directions of the legitimate receiver under both the beamforming schemes, and the transmitter can adaptively choose the PA or LFDA beamforming scheme to improve the covertness performance against spatially random wardens.</description><identifier>ISSN: 2327-4662</identifier><identifier>EISSN: 2327-4662</identifier><identifier>DOI: 10.1109/JIOT.2023.3296414</identifier><identifier>CODEN: IITJAU</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Antenna gain ; Array signal processing ; Beamforming ; Covert communications ; finite blocklength ; Jamming ; Millimeter wave communication ; Millimeter waves ; mmWave ; multi-antenna ; Optimization ; Phased arrays ; stochastic geometry ; Transmitters ; Uncertainty ; Wireless communication</subject><ispartof>IEEE internet of things journal, 2024-01, Vol.11 (2), p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c294t-244b51ee15ab97de4ed9ef43ea51dca9b06d083a7d2d67650d3b6d760c4f5cb3</citedby><cites>FETCH-LOGICAL-c294t-244b51ee15ab97de4ed9ef43ea51dca9b06d083a7d2d67650d3b6d760c4f5cb3</cites><orcidid>0000-0002-7169-9563 ; 0000-0002-0220-4088 ; 0000-0003-2699-9943 ; 0000-0003-1879-6695 ; 0000-0002-9294-664X ; 0000-0002-1999-627X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10185203$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10185203$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ma, Ruiqian</creatorcontrib><creatorcontrib>Yang, Weiwei</creatorcontrib><creatorcontrib>Guan, Xinrong</creatorcontrib><creatorcontrib>Lu, Xingbo</creatorcontrib><creatorcontrib>Song, Yi</creatorcontrib><creatorcontrib>Chen, Dechuan</creatorcontrib><title>Covert mmWave Communications with Finite Blocklength Against Spatially Random Wardens</title><title>IEEE internet of things journal</title><addtitle>JIoT</addtitle><description>In this paper, we investigate covert millimeter wave (mmWave) communications with finite blocklength, where a multi-antenna transmitter sends covert messages to a legitimate receiver in the presence of spatially random wardens. Both the phase array (PA) and linear frequency diverse array (LFDA) beamforming schemes, which are designed to maximize the antenna gain from the transmitter to the legitimate receiver, are investigated to improve the covert communication performance. First, the novel expressions of covert communication constraint and average effective covert throughput (AECT) are derived for both beamforming schemes. Then, taking into account the constraint of maximal available blocklength, the optimal transmit power and blocklength are determined for maximizing the AECT. Typically, comparing to the benchmark with fixed blocklength, the enhancement of AECT by utilizing the optimized blocklength enlarges as the density of wardens increases. In addition, it is observed that increasing the maximal available blocklength cannot always improve the maximum AECT due to the trade-off between the transmit power and blocklength. Furthermore, it is shown that the maximum AECT varies for different directions of the legitimate receiver under both the beamforming schemes, and the transmitter can adaptively choose the PA or LFDA beamforming scheme to improve the covertness performance against spatially random wardens.</description><subject>Antenna gain</subject><subject>Array signal processing</subject><subject>Beamforming</subject><subject>Covert communications</subject><subject>finite blocklength</subject><subject>Jamming</subject><subject>Millimeter wave communication</subject><subject>Millimeter waves</subject><subject>mmWave</subject><subject>multi-antenna</subject><subject>Optimization</subject><subject>Phased arrays</subject><subject>stochastic geometry</subject><subject>Transmitters</subject><subject>Uncertainty</subject><subject>Wireless communication</subject><issn>2327-4662</issn><issn>2327-4662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1rAjEQhkNpoWL9AYUeAj1r87VZc7RLbS2C0Fo8huxm1sbubmyyWvz3XdGDpxmG550XHoTuKRlRStTT-2yxHDHC-IgzJQUVV6jHOEuHQkp2fbHfokGMG0JIF0uokj30lfk9hBbX9crsAWe-rneNK0zrfBPxn2u_8dQ1rgX8XPnip4Jm3Z0ma-Oa2OLPbQeaqjrgD9NYX-OVCRaaeIduSlNFGJxnHy2nL8vsbThfvM6yyXxYMCXaIRMiTygATUyuUgsCrIJScDAJtYVROZGWjLlJLbMylQmxPJc2laQQZVLkvI8eT2-3wf_uILZ643eh6Ro1U7Sr4ITLjqInqgg-xgCl3gZXm3DQlOijP330p4_-9Nlfl3k4ZRwAXPB0nDDC-T9PFGzb</recordid><startdate>20240115</startdate><enddate>20240115</enddate><creator>Ma, Ruiqian</creator><creator>Yang, Weiwei</creator><creator>Guan, Xinrong</creator><creator>Lu, Xingbo</creator><creator>Song, Yi</creator><creator>Chen, Dechuan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-7169-9563</orcidid><orcidid>https://orcid.org/0000-0002-0220-4088</orcidid><orcidid>https://orcid.org/0000-0003-2699-9943</orcidid><orcidid>https://orcid.org/0000-0003-1879-6695</orcidid><orcidid>https://orcid.org/0000-0002-9294-664X</orcidid><orcidid>https://orcid.org/0000-0002-1999-627X</orcidid></search><sort><creationdate>20240115</creationdate><title>Covert mmWave Communications with Finite Blocklength Against Spatially Random Wardens</title><author>Ma, Ruiqian ; Yang, Weiwei ; Guan, Xinrong ; Lu, Xingbo ; Song, Yi ; Chen, Dechuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c294t-244b51ee15ab97de4ed9ef43ea51dca9b06d083a7d2d67650d3b6d760c4f5cb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Antenna gain</topic><topic>Array signal processing</topic><topic>Beamforming</topic><topic>Covert communications</topic><topic>finite blocklength</topic><topic>Jamming</topic><topic>Millimeter wave communication</topic><topic>Millimeter waves</topic><topic>mmWave</topic><topic>multi-antenna</topic><topic>Optimization</topic><topic>Phased arrays</topic><topic>stochastic geometry</topic><topic>Transmitters</topic><topic>Uncertainty</topic><topic>Wireless communication</topic><toplevel>online_resources</toplevel><creatorcontrib>Ma, Ruiqian</creatorcontrib><creatorcontrib>Yang, Weiwei</creatorcontrib><creatorcontrib>Guan, Xinrong</creatorcontrib><creatorcontrib>Lu, Xingbo</creatorcontrib><creatorcontrib>Song, Yi</creatorcontrib><creatorcontrib>Chen, Dechuan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE internet of things journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ma, Ruiqian</au><au>Yang, Weiwei</au><au>Guan, Xinrong</au><au>Lu, Xingbo</au><au>Song, Yi</au><au>Chen, Dechuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Covert mmWave Communications with Finite Blocklength Against Spatially Random Wardens</atitle><jtitle>IEEE internet of things journal</jtitle><stitle>JIoT</stitle><date>2024-01-15</date><risdate>2024</risdate><volume>11</volume><issue>2</issue><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2327-4662</issn><eissn>2327-4662</eissn><coden>IITJAU</coden><abstract>In this paper, we investigate covert millimeter wave (mmWave) communications with finite blocklength, where a multi-antenna transmitter sends covert messages to a legitimate receiver in the presence of spatially random wardens. Both the phase array (PA) and linear frequency diverse array (LFDA) beamforming schemes, which are designed to maximize the antenna gain from the transmitter to the legitimate receiver, are investigated to improve the covert communication performance. First, the novel expressions of covert communication constraint and average effective covert throughput (AECT) are derived for both beamforming schemes. Then, taking into account the constraint of maximal available blocklength, the optimal transmit power and blocklength are determined for maximizing the AECT. Typically, comparing to the benchmark with fixed blocklength, the enhancement of AECT by utilizing the optimized blocklength enlarges as the density of wardens increases. In addition, it is observed that increasing the maximal available blocklength cannot always improve the maximum AECT due to the trade-off between the transmit power and blocklength. Furthermore, it is shown that the maximum AECT varies for different directions of the legitimate receiver under both the beamforming schemes, and the transmitter can adaptively choose the PA or LFDA beamforming scheme to improve the covertness performance against spatially random wardens.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JIOT.2023.3296414</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-7169-9563</orcidid><orcidid>https://orcid.org/0000-0002-0220-4088</orcidid><orcidid>https://orcid.org/0000-0003-2699-9943</orcidid><orcidid>https://orcid.org/0000-0003-1879-6695</orcidid><orcidid>https://orcid.org/0000-0002-9294-664X</orcidid><orcidid>https://orcid.org/0000-0002-1999-627X</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2327-4662 |
ispartof | IEEE internet of things journal, 2024-01, Vol.11 (2), p.1-1 |
issn | 2327-4662 2327-4662 |
language | eng |
recordid | cdi_crossref_primary_10_1109_JIOT_2023_3296414 |
source | IEEE Electronic Library (IEL) |
subjects | Antenna gain Array signal processing Beamforming Covert communications finite blocklength Jamming Millimeter wave communication Millimeter waves mmWave multi-antenna Optimization Phased arrays stochastic geometry Transmitters Uncertainty Wireless communication |
title | Covert mmWave Communications with Finite Blocklength Against Spatially Random Wardens |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T19%3A47%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Covert%20mmWave%20Communications%20with%20Finite%20Blocklength%20Against%20Spatially%20Random%20Wardens&rft.jtitle=IEEE%20internet%20of%20things%20journal&rft.au=Ma,%20Ruiqian&rft.date=2024-01-15&rft.volume=11&rft.issue=2&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2327-4662&rft.eissn=2327-4662&rft.coden=IITJAU&rft_id=info:doi/10.1109/JIOT.2023.3296414&rft_dat=%3Cproquest_RIE%3E2912943036%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2912943036&rft_id=info:pmid/&rft_ieee_id=10185203&rfr_iscdi=true |