Satellite Edge Computing with Collaborative Computation Offloading: An Intelligent Deep Deterministic Policy Gradient Approach
Enabling a satellite network with edge computing capabilities can complement the advantages further of a single terrestrial network and provide users with a full range of computing service. Satellite edge computing is a potentially indispensable technology for the future satellite-terrestrial integr...
Gespeichert in:
Veröffentlicht in: | IEEE internet of things journal 2023-05, Vol.10 (10), p.1-1 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1 |
---|---|
container_issue | 10 |
container_start_page | 1 |
container_title | IEEE internet of things journal |
container_volume | 10 |
creator | Zhang, Hangyu Liu, Rongke Kaushik, Aryan Gao, Xiangqiang |
description | Enabling a satellite network with edge computing capabilities can complement the advantages further of a single terrestrial network and provide users with a full range of computing service. Satellite edge computing is a potentially indispensable technology for the future satellite-terrestrial integrated networks. In this paper, a three-tier edge computing architecture consisting of terminal-satellite-cloud is proposed, where tasks can be processed at three planes and inter-satellites can cooperate to achieve on-board load balancing. Facing varying and random task queues with different service requirements, we formulate the objective problem of minimizing the system energy consumption under the delay and resource constraints, and jointly optimize the offloading decision, communication and computing resource allocation variables. Moreover, the distribution of resources is based on the reservation mechanism to ensure the stability of satellite-terrestrial link and the reliability of computation process. To adapt to the dynamic environment, we propose an intelligent computation offloading scheme based on the deep deterministic policy gradient (DDPG) algorithm, which consists of several different deep neural networks (DNN) to output both discrete and continuous variables. Additionally, by setting the selection process of legal actions, the simultaneous decisions on offloading locations and allocating resources under multi-task concurrency is realized. The simulation results show that the proposed scheme can effectively reduce the total energy consumption of the system by ensuring that the task is completed on demand, and outperform the benchmark algorithms. |
doi_str_mv | 10.1109/JIOT.2022.3233383 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JIOT_2022_3233383</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10032271</ieee_id><sourcerecordid>2809899028</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-a91736cb02662a900d5a4ec72e1bc2d36bea025ffb42ac560bb8a045c96567173</originalsourceid><addsrcrecordid>eNpNkEFPwjAUxxujiQT5ACYemngGX9ut27wRRMSQYCKem67roGSssysaLn52O8GES_te-vu9l_4RuiUwIgSyh9f5cjWiQOmIUcZYyi5QjzKaDCPO6eVZfY0GbbsFgKDFJOM99PMuva4q4zWeFmuNJ3bX7L2p1_jb-E1oq0rm1klvvv4fQ21rvCzLysoikI94XON5_TdmrWuPn7RuwuG125natN4o_GYrow545oLRIeOmcVaqzQ26KmXV6sHp7qOP5-lq8jJcLGfzyXgxVCyN_VBmJGFc5UDDJ2QGUMQy0iqhmuSKFoznWgKNyzKPqFQxhzxPJUSxynjMk-D20f1xblj7udetF1u7d3VYKWgKWZplQNNAkSOlnG1bp0vROLOT7iAIiC5p0SUtuqTFKeng3B0do7U-44FRmhD2C_Ime2s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2809899028</pqid></control><display><type>article</type><title>Satellite Edge Computing with Collaborative Computation Offloading: An Intelligent Deep Deterministic Policy Gradient Approach</title><source>IEEE Electronic Library (IEL)</source><creator>Zhang, Hangyu ; Liu, Rongke ; Kaushik, Aryan ; Gao, Xiangqiang</creator><creatorcontrib>Zhang, Hangyu ; Liu, Rongke ; Kaushik, Aryan ; Gao, Xiangqiang</creatorcontrib><description>Enabling a satellite network with edge computing capabilities can complement the advantages further of a single terrestrial network and provide users with a full range of computing service. Satellite edge computing is a potentially indispensable technology for the future satellite-terrestrial integrated networks. In this paper, a three-tier edge computing architecture consisting of terminal-satellite-cloud is proposed, where tasks can be processed at three planes and inter-satellites can cooperate to achieve on-board load balancing. Facing varying and random task queues with different service requirements, we formulate the objective problem of minimizing the system energy consumption under the delay and resource constraints, and jointly optimize the offloading decision, communication and computing resource allocation variables. Moreover, the distribution of resources is based on the reservation mechanism to ensure the stability of satellite-terrestrial link and the reliability of computation process. To adapt to the dynamic environment, we propose an intelligent computation offloading scheme based on the deep deterministic policy gradient (DDPG) algorithm, which consists of several different deep neural networks (DNN) to output both discrete and continuous variables. Additionally, by setting the selection process of legal actions, the simultaneous decisions on offloading locations and allocating resources under multi-task concurrency is realized. The simulation results show that the proposed scheme can effectively reduce the total energy consumption of the system by ensuring that the task is completed on demand, and outperform the benchmark algorithms.</description><identifier>ISSN: 2327-4662</identifier><identifier>EISSN: 2327-4662</identifier><identifier>DOI: 10.1109/JIOT.2022.3233383</identifier><identifier>CODEN: IITJAU</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Artificial neural networks ; Cloud computing ; Computation offloading ; Continuity (mathematics) ; deep deterministic policy gradient ; Edge computing ; Energy consumption ; Heuristic algorithms ; inter-satellite cooperative computing ; Internet of Things ; Litigation ; Optimization ; Resource allocation ; Resource management ; Satellite edge computing ; Satellite networks ; Satellites ; Task analysis</subject><ispartof>IEEE internet of things journal, 2023-05, Vol.10 (10), p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-a91736cb02662a900d5a4ec72e1bc2d36bea025ffb42ac560bb8a045c96567173</citedby><cites>FETCH-LOGICAL-c385t-a91736cb02662a900d5a4ec72e1bc2d36bea025ffb42ac560bb8a045c96567173</cites><orcidid>0000-0003-3098-8649 ; 0000-0001-5544-0124 ; 0000-0002-2289-6229 ; 0000-0001-6252-4641</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10032271$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10032271$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhang, Hangyu</creatorcontrib><creatorcontrib>Liu, Rongke</creatorcontrib><creatorcontrib>Kaushik, Aryan</creatorcontrib><creatorcontrib>Gao, Xiangqiang</creatorcontrib><title>Satellite Edge Computing with Collaborative Computation Offloading: An Intelligent Deep Deterministic Policy Gradient Approach</title><title>IEEE internet of things journal</title><addtitle>JIoT</addtitle><description>Enabling a satellite network with edge computing capabilities can complement the advantages further of a single terrestrial network and provide users with a full range of computing service. Satellite edge computing is a potentially indispensable technology for the future satellite-terrestrial integrated networks. In this paper, a three-tier edge computing architecture consisting of terminal-satellite-cloud is proposed, where tasks can be processed at three planes and inter-satellites can cooperate to achieve on-board load balancing. Facing varying and random task queues with different service requirements, we formulate the objective problem of minimizing the system energy consumption under the delay and resource constraints, and jointly optimize the offloading decision, communication and computing resource allocation variables. Moreover, the distribution of resources is based on the reservation mechanism to ensure the stability of satellite-terrestrial link and the reliability of computation process. To adapt to the dynamic environment, we propose an intelligent computation offloading scheme based on the deep deterministic policy gradient (DDPG) algorithm, which consists of several different deep neural networks (DNN) to output both discrete and continuous variables. Additionally, by setting the selection process of legal actions, the simultaneous decisions on offloading locations and allocating resources under multi-task concurrency is realized. The simulation results show that the proposed scheme can effectively reduce the total energy consumption of the system by ensuring that the task is completed on demand, and outperform the benchmark algorithms.</description><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Cloud computing</subject><subject>Computation offloading</subject><subject>Continuity (mathematics)</subject><subject>deep deterministic policy gradient</subject><subject>Edge computing</subject><subject>Energy consumption</subject><subject>Heuristic algorithms</subject><subject>inter-satellite cooperative computing</subject><subject>Internet of Things</subject><subject>Litigation</subject><subject>Optimization</subject><subject>Resource allocation</subject><subject>Resource management</subject><subject>Satellite edge computing</subject><subject>Satellite networks</subject><subject>Satellites</subject><subject>Task analysis</subject><issn>2327-4662</issn><issn>2327-4662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkEFPwjAUxxujiQT5ACYemngGX9ut27wRRMSQYCKem67roGSssysaLn52O8GES_te-vu9l_4RuiUwIgSyh9f5cjWiQOmIUcZYyi5QjzKaDCPO6eVZfY0GbbsFgKDFJOM99PMuva4q4zWeFmuNJ3bX7L2p1_jb-E1oq0rm1klvvv4fQ21rvCzLysoikI94XON5_TdmrWuPn7RuwuG125natN4o_GYrow545oLRIeOmcVaqzQ26KmXV6sHp7qOP5-lq8jJcLGfzyXgxVCyN_VBmJGFc5UDDJ2QGUMQy0iqhmuSKFoznWgKNyzKPqFQxhzxPJUSxynjMk-D20f1xblj7udetF1u7d3VYKWgKWZplQNNAkSOlnG1bp0vROLOT7iAIiC5p0SUtuqTFKeng3B0do7U-44FRmhD2C_Ime2s</recordid><startdate>20230515</startdate><enddate>20230515</enddate><creator>Zhang, Hangyu</creator><creator>Liu, Rongke</creator><creator>Kaushik, Aryan</creator><creator>Gao, Xiangqiang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-3098-8649</orcidid><orcidid>https://orcid.org/0000-0001-5544-0124</orcidid><orcidid>https://orcid.org/0000-0002-2289-6229</orcidid><orcidid>https://orcid.org/0000-0001-6252-4641</orcidid></search><sort><creationdate>20230515</creationdate><title>Satellite Edge Computing with Collaborative Computation Offloading: An Intelligent Deep Deterministic Policy Gradient Approach</title><author>Zhang, Hangyu ; Liu, Rongke ; Kaushik, Aryan ; Gao, Xiangqiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-a91736cb02662a900d5a4ec72e1bc2d36bea025ffb42ac560bb8a045c96567173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Cloud computing</topic><topic>Computation offloading</topic><topic>Continuity (mathematics)</topic><topic>deep deterministic policy gradient</topic><topic>Edge computing</topic><topic>Energy consumption</topic><topic>Heuristic algorithms</topic><topic>inter-satellite cooperative computing</topic><topic>Internet of Things</topic><topic>Litigation</topic><topic>Optimization</topic><topic>Resource allocation</topic><topic>Resource management</topic><topic>Satellite edge computing</topic><topic>Satellite networks</topic><topic>Satellites</topic><topic>Task analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Hangyu</creatorcontrib><creatorcontrib>Liu, Rongke</creatorcontrib><creatorcontrib>Kaushik, Aryan</creatorcontrib><creatorcontrib>Gao, Xiangqiang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE internet of things journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhang, Hangyu</au><au>Liu, Rongke</au><au>Kaushik, Aryan</au><au>Gao, Xiangqiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Satellite Edge Computing with Collaborative Computation Offloading: An Intelligent Deep Deterministic Policy Gradient Approach</atitle><jtitle>IEEE internet of things journal</jtitle><stitle>JIoT</stitle><date>2023-05-15</date><risdate>2023</risdate><volume>10</volume><issue>10</issue><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2327-4662</issn><eissn>2327-4662</eissn><coden>IITJAU</coden><abstract>Enabling a satellite network with edge computing capabilities can complement the advantages further of a single terrestrial network and provide users with a full range of computing service. Satellite edge computing is a potentially indispensable technology for the future satellite-terrestrial integrated networks. In this paper, a three-tier edge computing architecture consisting of terminal-satellite-cloud is proposed, where tasks can be processed at three planes and inter-satellites can cooperate to achieve on-board load balancing. Facing varying and random task queues with different service requirements, we formulate the objective problem of minimizing the system energy consumption under the delay and resource constraints, and jointly optimize the offloading decision, communication and computing resource allocation variables. Moreover, the distribution of resources is based on the reservation mechanism to ensure the stability of satellite-terrestrial link and the reliability of computation process. To adapt to the dynamic environment, we propose an intelligent computation offloading scheme based on the deep deterministic policy gradient (DDPG) algorithm, which consists of several different deep neural networks (DNN) to output both discrete and continuous variables. Additionally, by setting the selection process of legal actions, the simultaneous decisions on offloading locations and allocating resources under multi-task concurrency is realized. The simulation results show that the proposed scheme can effectively reduce the total energy consumption of the system by ensuring that the task is completed on demand, and outperform the benchmark algorithms.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JIOT.2022.3233383</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-3098-8649</orcidid><orcidid>https://orcid.org/0000-0001-5544-0124</orcidid><orcidid>https://orcid.org/0000-0002-2289-6229</orcidid><orcidid>https://orcid.org/0000-0001-6252-4641</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2327-4662 |
ispartof | IEEE internet of things journal, 2023-05, Vol.10 (10), p.1-1 |
issn | 2327-4662 2327-4662 |
language | eng |
recordid | cdi_crossref_primary_10_1109_JIOT_2022_3233383 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Artificial neural networks Cloud computing Computation offloading Continuity (mathematics) deep deterministic policy gradient Edge computing Energy consumption Heuristic algorithms inter-satellite cooperative computing Internet of Things Litigation Optimization Resource allocation Resource management Satellite edge computing Satellite networks Satellites Task analysis |
title | Satellite Edge Computing with Collaborative Computation Offloading: An Intelligent Deep Deterministic Policy Gradient Approach |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T15%3A54%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Satellite%20Edge%20Computing%20with%20Collaborative%20Computation%20Offloading:%20An%20Intelligent%20Deep%20Deterministic%20Policy%20Gradient%20Approach&rft.jtitle=IEEE%20internet%20of%20things%20journal&rft.au=Zhang,%20Hangyu&rft.date=2023-05-15&rft.volume=10&rft.issue=10&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2327-4662&rft.eissn=2327-4662&rft.coden=IITJAU&rft_id=info:doi/10.1109/JIOT.2022.3233383&rft_dat=%3Cproquest_RIE%3E2809899028%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2809899028&rft_id=info:pmid/&rft_ieee_id=10032271&rfr_iscdi=true |