Optimal Environment Control Mechanism Based on OCF Connectivity for Efficient Energy Consumption in Greenhouse

Greenhouses are a productive system that allows us to respond to the growing global demand for fresh and healthy food throughout the year, but the greenhouse environment is not easily controlled because its climate parameters are interrelated. However, the numbers of the actuator are operated parall...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE internet of things journal 2023-03, Vol.10 (6), p.5035-5049
Hauptverfasser: Rizwan, Atif, Khan, Anam Nawaz, Ahmad, Rashid, Kim, Do Hyeun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5049
container_issue 6
container_start_page 5035
container_title IEEE internet of things journal
container_volume 10
creator Rizwan, Atif
Khan, Anam Nawaz
Ahmad, Rashid
Kim, Do Hyeun
description Greenhouses are a productive system that allows us to respond to the growing global demand for fresh and healthy food throughout the year, but the greenhouse environment is not easily controlled because its climate parameters are interrelated. However, the numbers of the actuator are operated parallelly to maintain the greenhouse environment; as a result, the energy consumption of greenhouses is high. In this study, we presented the optimization module by considering the outdoor environment with the aim of minimum energy consumption. Metaheuristic-based differential evaluation (DE) is used to optimize the climate parameters by considering indoor and outdoor environmental constraints. Furthermore, the long short-term memory (LSTM)-based inference model is offloaded on the Internet of Things (IoT) device to predict the next environmental situation. The objective function selects the optimal parameters within user preferences with minimum energy consumption based on the inferred parameter value. The open-source software framework IoTivity, implementing open connectivity foundation (OCF) technical standards, is used for the real-time connection between IoT devices and the IoT platform. Greenhouse owners can set the preferences based on the requirements of plants in the greenhouse by using a smart and remotely accessible Android-based interface. A fuzzy logic-based control module operates on an IoT device that maps the optimized parameters with the actuator and operates accordingly. The proposed model is analyzed, and the performance is evaluated in terms of energy consumption for each climate parameter and actuator in the greenhouse. The results show that the proposed mechanism saves 36% of energy.
doi_str_mv 10.1109/JIOT.2022.3222086
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JIOT_2022_3222086</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9951153</ieee_id><sourcerecordid>2784550307</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-d0bf2186ccaa9400f8ab93078f970a98b3e233463178bd284e0c2418f9bdf0cb3</originalsourceid><addsrcrecordid>eNpNkF1LwzAUhoMoOOZ-gHgT8LozH_1ILrVsczLpzbwObZq4jDWZSTvYvzdlQ7w6B877vAceAB4xmmOM-MvHutrOCSJkTgkhiOU3YEIoKZI0z8ntv_0ezELYI4QilmGeT4Ctjr3p6gNc2JPxznbK9rB0tvfuAD-V3NXWhA6-1UG10FlYlcvxbJXszcn0Z6idhwutjTQjubDKf5_HRBi62BwJY-HKK2V3bgjqAdzp-hDU7Dqn4Gu52JbvyaZarcvXTSIpzfukRY0mmOVS1jVPEdKsbjhFBdO8QDVnDVWE0jSnuGBNS1iqkCQpjuem1Ug2dAqeL71H734GFXqxd4O38aUgBUuzDMW2mMKXlPQuBK-0OPoow58FRmI0K0azYjQrrmYj83RhjFLqL895hnFG6S9SmnUU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2784550307</pqid></control><display><type>article</type><title>Optimal Environment Control Mechanism Based on OCF Connectivity for Efficient Energy Consumption in Greenhouse</title><source>IEEE Electronic Library (IEL)</source><creator>Rizwan, Atif ; Khan, Anam Nawaz ; Ahmad, Rashid ; Kim, Do Hyeun</creator><creatorcontrib>Rizwan, Atif ; Khan, Anam Nawaz ; Ahmad, Rashid ; Kim, Do Hyeun</creatorcontrib><description>Greenhouses are a productive system that allows us to respond to the growing global demand for fresh and healthy food throughout the year, but the greenhouse environment is not easily controlled because its climate parameters are interrelated. However, the numbers of the actuator are operated parallelly to maintain the greenhouse environment; as a result, the energy consumption of greenhouses is high. In this study, we presented the optimization module by considering the outdoor environment with the aim of minimum energy consumption. Metaheuristic-based differential evaluation (DE) is used to optimize the climate parameters by considering indoor and outdoor environmental constraints. Furthermore, the long short-term memory (LSTM)-based inference model is offloaded on the Internet of Things (IoT) device to predict the next environmental situation. The objective function selects the optimal parameters within user preferences with minimum energy consumption based on the inferred parameter value. The open-source software framework IoTivity, implementing open connectivity foundation (OCF) technical standards, is used for the real-time connection between IoT devices and the IoT platform. Greenhouse owners can set the preferences based on the requirements of plants in the greenhouse by using a smart and remotely accessible Android-based interface. A fuzzy logic-based control module operates on an IoT device that maps the optimized parameters with the actuator and operates accordingly. The proposed model is analyzed, and the performance is evaluated in terms of energy consumption for each climate parameter and actuator in the greenhouse. The results show that the proposed mechanism saves 36% of energy.</description><identifier>ISSN: 2327-4662</identifier><identifier>EISSN: 2327-4662</identifier><identifier>DOI: 10.1109/JIOT.2022.3222086</identifier><identifier>CODEN: IITJAU</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Actuators ; Air pollution ; Artificial intelligence ; Energy consumption ; Energy efficiency ; Energy optimization ; Fuzzy control ; Fuzzy logic ; Green products ; greenhouse ; Greenhouses ; Heuristic methods ; Indoor environments ; inference mechanism ; Internet of Things ; Mathematical models ; Modules ; open connectivity foundation (OCF) IoTivity ; Optimization ; optimization problems ; Parameters ; Performance evaluation</subject><ispartof>IEEE internet of things journal, 2023-03, Vol.10 (6), p.5035-5049</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-d0bf2186ccaa9400f8ab93078f970a98b3e233463178bd284e0c2418f9bdf0cb3</citedby><cites>FETCH-LOGICAL-c336t-d0bf2186ccaa9400f8ab93078f970a98b3e233463178bd284e0c2418f9bdf0cb3</cites><orcidid>0000-0001-6260-5820 ; 0000-0002-3457-2301 ; 0000-0001-6922-7412 ; 0000-0001-6669-8147</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9951153$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids></links><search><creatorcontrib>Rizwan, Atif</creatorcontrib><creatorcontrib>Khan, Anam Nawaz</creatorcontrib><creatorcontrib>Ahmad, Rashid</creatorcontrib><creatorcontrib>Kim, Do Hyeun</creatorcontrib><title>Optimal Environment Control Mechanism Based on OCF Connectivity for Efficient Energy Consumption in Greenhouse</title><title>IEEE internet of things journal</title><addtitle>JIoT</addtitle><description>Greenhouses are a productive system that allows us to respond to the growing global demand for fresh and healthy food throughout the year, but the greenhouse environment is not easily controlled because its climate parameters are interrelated. However, the numbers of the actuator are operated parallelly to maintain the greenhouse environment; as a result, the energy consumption of greenhouses is high. In this study, we presented the optimization module by considering the outdoor environment with the aim of minimum energy consumption. Metaheuristic-based differential evaluation (DE) is used to optimize the climate parameters by considering indoor and outdoor environmental constraints. Furthermore, the long short-term memory (LSTM)-based inference model is offloaded on the Internet of Things (IoT) device to predict the next environmental situation. The objective function selects the optimal parameters within user preferences with minimum energy consumption based on the inferred parameter value. The open-source software framework IoTivity, implementing open connectivity foundation (OCF) technical standards, is used for the real-time connection between IoT devices and the IoT platform. Greenhouse owners can set the preferences based on the requirements of plants in the greenhouse by using a smart and remotely accessible Android-based interface. A fuzzy logic-based control module operates on an IoT device that maps the optimized parameters with the actuator and operates accordingly. The proposed model is analyzed, and the performance is evaluated in terms of energy consumption for each climate parameter and actuator in the greenhouse. The results show that the proposed mechanism saves 36% of energy.</description><subject>Actuators</subject><subject>Air pollution</subject><subject>Artificial intelligence</subject><subject>Energy consumption</subject><subject>Energy efficiency</subject><subject>Energy optimization</subject><subject>Fuzzy control</subject><subject>Fuzzy logic</subject><subject>Green products</subject><subject>greenhouse</subject><subject>Greenhouses</subject><subject>Heuristic methods</subject><subject>Indoor environments</subject><subject>inference mechanism</subject><subject>Internet of Things</subject><subject>Mathematical models</subject><subject>Modules</subject><subject>open connectivity foundation (OCF) IoTivity</subject><subject>Optimization</subject><subject>optimization problems</subject><subject>Parameters</subject><subject>Performance evaluation</subject><issn>2327-4662</issn><issn>2327-4662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><recordid>eNpNkF1LwzAUhoMoOOZ-gHgT8LozH_1ILrVsczLpzbwObZq4jDWZSTvYvzdlQ7w6B877vAceAB4xmmOM-MvHutrOCSJkTgkhiOU3YEIoKZI0z8ntv_0ezELYI4QilmGeT4Ctjr3p6gNc2JPxznbK9rB0tvfuAD-V3NXWhA6-1UG10FlYlcvxbJXszcn0Z6idhwutjTQjubDKf5_HRBi62BwJY-HKK2V3bgjqAdzp-hDU7Dqn4Gu52JbvyaZarcvXTSIpzfukRY0mmOVS1jVPEdKsbjhFBdO8QDVnDVWE0jSnuGBNS1iqkCQpjuem1Ug2dAqeL71H734GFXqxd4O38aUgBUuzDMW2mMKXlPQuBK-0OPoow58FRmI0K0azYjQrrmYj83RhjFLqL895hnFG6S9SmnUU</recordid><startdate>20230315</startdate><enddate>20230315</enddate><creator>Rizwan, Atif</creator><creator>Khan, Anam Nawaz</creator><creator>Ahmad, Rashid</creator><creator>Kim, Do Hyeun</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-6260-5820</orcidid><orcidid>https://orcid.org/0000-0002-3457-2301</orcidid><orcidid>https://orcid.org/0000-0001-6922-7412</orcidid><orcidid>https://orcid.org/0000-0001-6669-8147</orcidid></search><sort><creationdate>20230315</creationdate><title>Optimal Environment Control Mechanism Based on OCF Connectivity for Efficient Energy Consumption in Greenhouse</title><author>Rizwan, Atif ; Khan, Anam Nawaz ; Ahmad, Rashid ; Kim, Do Hyeun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-d0bf2186ccaa9400f8ab93078f970a98b3e233463178bd284e0c2418f9bdf0cb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Actuators</topic><topic>Air pollution</topic><topic>Artificial intelligence</topic><topic>Energy consumption</topic><topic>Energy efficiency</topic><topic>Energy optimization</topic><topic>Fuzzy control</topic><topic>Fuzzy logic</topic><topic>Green products</topic><topic>greenhouse</topic><topic>Greenhouses</topic><topic>Heuristic methods</topic><topic>Indoor environments</topic><topic>inference mechanism</topic><topic>Internet of Things</topic><topic>Mathematical models</topic><topic>Modules</topic><topic>open connectivity foundation (OCF) IoTivity</topic><topic>Optimization</topic><topic>optimization problems</topic><topic>Parameters</topic><topic>Performance evaluation</topic><toplevel>online_resources</toplevel><creatorcontrib>Rizwan, Atif</creatorcontrib><creatorcontrib>Khan, Anam Nawaz</creatorcontrib><creatorcontrib>Ahmad, Rashid</creatorcontrib><creatorcontrib>Kim, Do Hyeun</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE internet of things journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rizwan, Atif</au><au>Khan, Anam Nawaz</au><au>Ahmad, Rashid</au><au>Kim, Do Hyeun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal Environment Control Mechanism Based on OCF Connectivity for Efficient Energy Consumption in Greenhouse</atitle><jtitle>IEEE internet of things journal</jtitle><stitle>JIoT</stitle><date>2023-03-15</date><risdate>2023</risdate><volume>10</volume><issue>6</issue><spage>5035</spage><epage>5049</epage><pages>5035-5049</pages><issn>2327-4662</issn><eissn>2327-4662</eissn><coden>IITJAU</coden><abstract>Greenhouses are a productive system that allows us to respond to the growing global demand for fresh and healthy food throughout the year, but the greenhouse environment is not easily controlled because its climate parameters are interrelated. However, the numbers of the actuator are operated parallelly to maintain the greenhouse environment; as a result, the energy consumption of greenhouses is high. In this study, we presented the optimization module by considering the outdoor environment with the aim of minimum energy consumption. Metaheuristic-based differential evaluation (DE) is used to optimize the climate parameters by considering indoor and outdoor environmental constraints. Furthermore, the long short-term memory (LSTM)-based inference model is offloaded on the Internet of Things (IoT) device to predict the next environmental situation. The objective function selects the optimal parameters within user preferences with minimum energy consumption based on the inferred parameter value. The open-source software framework IoTivity, implementing open connectivity foundation (OCF) technical standards, is used for the real-time connection between IoT devices and the IoT platform. Greenhouse owners can set the preferences based on the requirements of plants in the greenhouse by using a smart and remotely accessible Android-based interface. A fuzzy logic-based control module operates on an IoT device that maps the optimized parameters with the actuator and operates accordingly. The proposed model is analyzed, and the performance is evaluated in terms of energy consumption for each climate parameter and actuator in the greenhouse. The results show that the proposed mechanism saves 36% of energy.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JIOT.2022.3222086</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-6260-5820</orcidid><orcidid>https://orcid.org/0000-0002-3457-2301</orcidid><orcidid>https://orcid.org/0000-0001-6922-7412</orcidid><orcidid>https://orcid.org/0000-0001-6669-8147</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2327-4662
ispartof IEEE internet of things journal, 2023-03, Vol.10 (6), p.5035-5049
issn 2327-4662
2327-4662
language eng
recordid cdi_crossref_primary_10_1109_JIOT_2022_3222086
source IEEE Electronic Library (IEL)
subjects Actuators
Air pollution
Artificial intelligence
Energy consumption
Energy efficiency
Energy optimization
Fuzzy control
Fuzzy logic
Green products
greenhouse
Greenhouses
Heuristic methods
Indoor environments
inference mechanism
Internet of Things
Mathematical models
Modules
open connectivity foundation (OCF) IoTivity
Optimization
optimization problems
Parameters
Performance evaluation
title Optimal Environment Control Mechanism Based on OCF Connectivity for Efficient Energy Consumption in Greenhouse
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T07%3A04%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20Environment%20Control%20Mechanism%20Based%20on%20OCF%20Connectivity%20for%20Efficient%20Energy%20Consumption%20in%20Greenhouse&rft.jtitle=IEEE%20internet%20of%20things%20journal&rft.au=Rizwan,%20Atif&rft.date=2023-03-15&rft.volume=10&rft.issue=6&rft.spage=5035&rft.epage=5049&rft.pages=5035-5049&rft.issn=2327-4662&rft.eissn=2327-4662&rft.coden=IITJAU&rft_id=info:doi/10.1109/JIOT.2022.3222086&rft_dat=%3Cproquest_cross%3E2784550307%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2784550307&rft_id=info:pmid/&rft_ieee_id=9951153&rfr_iscdi=true