Electricity-Theft Detection for Change-and-Transmit Advanced Metering Infrastructure

The periodic transmission of the customers' power consumption readings in the advanced metering infrastructure (AMI) is essential for energy management and billing. To collect the readings efficiently, the change and transmit approach is adopted in AMI (CAT AMI) so that the readings are reporte...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE internet of things journal 2022-12, Vol.9 (24), p.25565-25580
Hauptverfasser: Ibrahem, Mohamed I., Mahmoud, Mohamed M. E. A., Alsolami, Fawaz, Alasmary, Waleed, AL-Ghamdi, Abdullah Saad AL-Malaise, Shen, Xuemin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 25580
container_issue 24
container_start_page 25565
container_title IEEE internet of things journal
container_volume 9
creator Ibrahem, Mohamed I.
Mahmoud, Mohamed M. E. A.
Alsolami, Fawaz
Alasmary, Waleed
AL-Ghamdi, Abdullah Saad AL-Malaise
Shen, Xuemin
description The periodic transmission of the customers' power consumption readings in the advanced metering infrastructure (AMI) is essential for energy management and billing. To collect the readings efficiently, the change and transmit approach is adopted in AMI (CAT AMI) so that the readings are reported only when there is enough change in the consumption. However, CAT AMI suffers from malicious customers who launch electricity-theft cyberattacks by manipulating their readings to illegally reduce their bills. These attacks can cause hefty financial losses and degrade the grid performance because the readings are used for grid management. In this article, the electricity-theft problem in CAT AMI networks is investigated. We first process a real power consumption readings data set to create a benign data set and propose a new set of cyberattacks to create malicious samples. We then develop a deep-learning-based electricity-theft detection solution to identify malicious customers for the CAT AMI network. The proposed detector uses both the customers' transmission pattern and CAT readings to learn the correlation between them in order to enhance the detector's ability in identifying electricity thefts. We conduct extensive experiments to evaluate the performance of our electricity-theft detector, and the results indicate that our detector can accurately detect malicious customers and achieve higher detection rate and lower false alarm than the detectors that are trained only on the CAT readings.
doi_str_mv 10.1109/JIOT.2022.3197805
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JIOT_2022_3197805</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9861263</ieee_id><sourcerecordid>2747609386</sourcerecordid><originalsourceid>FETCH-LOGICAL-c341t-acdd817943cbcd370bb8d220451e84a504ef9b66babf0e963f9c16fa3ec273223</originalsourceid><addsrcrecordid>eNpNkE1LAzEQhoMoWGp_gHhZ8Jyar81ujqVWrVR6Wc8hm520W9psTbJC_71bKuJpXobnnYEHoXtKppQS9fS-XFdTRhibcqqKkuRXaMQ4K7CQkl3_y7doEuOOEDLUcqrkCFWLPdgUWtumE6624FL2DGlYtZ3PXBey-db4DWDjG1wF4-OhTdms-TbeQpN9DGho_SZbehdMTKG3qQ9wh26c2UeY_M4x-nxZVPM3vFq_LuezFbZc0ISNbZqSFkpwW9uGF6Suy4YxInIKpTA5EeBULWVtakdASe6UpdIZDpYVnDE-Ro-Xu8fQffUQk951ffDDS80KUUiieCkHil4oG7oYAzh9DO3BhJOmRJ_96bM_ffanf_0NnYdLpwWAP16VkjLJ-Q-foWxq</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2747609386</pqid></control><display><type>article</type><title>Electricity-Theft Detection for Change-and-Transmit Advanced Metering Infrastructure</title><source>IEEE Electronic Library (IEL)</source><creator>Ibrahem, Mohamed I. ; Mahmoud, Mohamed M. E. A. ; Alsolami, Fawaz ; Alasmary, Waleed ; AL-Ghamdi, Abdullah Saad AL-Malaise ; Shen, Xuemin</creator><creatorcontrib>Ibrahem, Mohamed I. ; Mahmoud, Mohamed M. E. A. ; Alsolami, Fawaz ; Alasmary, Waleed ; AL-Ghamdi, Abdullah Saad AL-Malaise ; Shen, Xuemin</creatorcontrib><description>The periodic transmission of the customers' power consumption readings in the advanced metering infrastructure (AMI) is essential for energy management and billing. To collect the readings efficiently, the change and transmit approach is adopted in AMI (CAT AMI) so that the readings are reported only when there is enough change in the consumption. However, CAT AMI suffers from malicious customers who launch electricity-theft cyberattacks by manipulating their readings to illegally reduce their bills. These attacks can cause hefty financial losses and degrade the grid performance because the readings are used for grid management. In this article, the electricity-theft problem in CAT AMI networks is investigated. We first process a real power consumption readings data set to create a benign data set and propose a new set of cyberattacks to create malicious samples. We then develop a deep-learning-based electricity-theft detection solution to identify malicious customers for the CAT AMI network. The proposed detector uses both the customers' transmission pattern and CAT readings to learn the correlation between them in order to enhance the detector's ability in identifying electricity thefts. We conduct extensive experiments to evaluate the performance of our electricity-theft detector, and the results indicate that our detector can accurately detect malicious customers and achieve higher detection rate and lower false alarm than the detectors that are trained only on the CAT readings.</description><identifier>ISSN: 2327-4662</identifier><identifier>EISSN: 2327-4662</identifier><identifier>DOI: 10.1109/JIOT.2022.3197805</identifier><identifier>CODEN: IITJAU</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Advanced metering infrastructure ; Change and transmit approach is adopted in AMI (CAT AMI) network ; Customers ; Cyberattack ; Datasets ; Deep learning ; Detectors ; Electricity ; electricity-theft cyberattacks ; electricity-theft detection ; Energy management ; False alarms ; Feature extraction ; Internet of Things ; Performance evaluation ; Power consumption ; Power demand ; Robbery ; Sensors ; smart grid (SG) ; Smart grids ; Theft</subject><ispartof>IEEE internet of things journal, 2022-12, Vol.9 (24), p.25565-25580</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c341t-acdd817943cbcd370bb8d220451e84a504ef9b66babf0e963f9c16fa3ec273223</citedby><cites>FETCH-LOGICAL-c341t-acdd817943cbcd370bb8d220451e84a504ef9b66babf0e963f9c16fa3ec273223</cites><orcidid>0000-0002-8719-501X ; 0000-0002-4140-287X ; 0000-0002-8000-4161 ; 0000-0002-0396-1347 ; 0000-0002-4349-144X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9861263$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9861263$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ibrahem, Mohamed I.</creatorcontrib><creatorcontrib>Mahmoud, Mohamed M. E. A.</creatorcontrib><creatorcontrib>Alsolami, Fawaz</creatorcontrib><creatorcontrib>Alasmary, Waleed</creatorcontrib><creatorcontrib>AL-Ghamdi, Abdullah Saad AL-Malaise</creatorcontrib><creatorcontrib>Shen, Xuemin</creatorcontrib><title>Electricity-Theft Detection for Change-and-Transmit Advanced Metering Infrastructure</title><title>IEEE internet of things journal</title><addtitle>JIoT</addtitle><description>The periodic transmission of the customers' power consumption readings in the advanced metering infrastructure (AMI) is essential for energy management and billing. To collect the readings efficiently, the change and transmit approach is adopted in AMI (CAT AMI) so that the readings are reported only when there is enough change in the consumption. However, CAT AMI suffers from malicious customers who launch electricity-theft cyberattacks by manipulating their readings to illegally reduce their bills. These attacks can cause hefty financial losses and degrade the grid performance because the readings are used for grid management. In this article, the electricity-theft problem in CAT AMI networks is investigated. We first process a real power consumption readings data set to create a benign data set and propose a new set of cyberattacks to create malicious samples. We then develop a deep-learning-based electricity-theft detection solution to identify malicious customers for the CAT AMI network. The proposed detector uses both the customers' transmission pattern and CAT readings to learn the correlation between them in order to enhance the detector's ability in identifying electricity thefts. We conduct extensive experiments to evaluate the performance of our electricity-theft detector, and the results indicate that our detector can accurately detect malicious customers and achieve higher detection rate and lower false alarm than the detectors that are trained only on the CAT readings.</description><subject>Advanced metering infrastructure</subject><subject>Change and transmit approach is adopted in AMI (CAT AMI) network</subject><subject>Customers</subject><subject>Cyberattack</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Detectors</subject><subject>Electricity</subject><subject>electricity-theft cyberattacks</subject><subject>electricity-theft detection</subject><subject>Energy management</subject><subject>False alarms</subject><subject>Feature extraction</subject><subject>Internet of Things</subject><subject>Performance evaluation</subject><subject>Power consumption</subject><subject>Power demand</subject><subject>Robbery</subject><subject>Sensors</subject><subject>smart grid (SG)</subject><subject>Smart grids</subject><subject>Theft</subject><issn>2327-4662</issn><issn>2327-4662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1LAzEQhoMoWGp_gHhZ8Jyar81ujqVWrVR6Wc8hm520W9psTbJC_71bKuJpXobnnYEHoXtKppQS9fS-XFdTRhibcqqKkuRXaMQ4K7CQkl3_y7doEuOOEDLUcqrkCFWLPdgUWtumE6624FL2DGlYtZ3PXBey-db4DWDjG1wF4-OhTdms-TbeQpN9DGho_SZbehdMTKG3qQ9wh26c2UeY_M4x-nxZVPM3vFq_LuezFbZc0ISNbZqSFkpwW9uGF6Suy4YxInIKpTA5EeBULWVtakdASe6UpdIZDpYVnDE-Ro-Xu8fQffUQk951ffDDS80KUUiieCkHil4oG7oYAzh9DO3BhJOmRJ_96bM_ffanf_0NnYdLpwWAP16VkjLJ-Q-foWxq</recordid><startdate>20221215</startdate><enddate>20221215</enddate><creator>Ibrahem, Mohamed I.</creator><creator>Mahmoud, Mohamed M. E. A.</creator><creator>Alsolami, Fawaz</creator><creator>Alasmary, Waleed</creator><creator>AL-Ghamdi, Abdullah Saad AL-Malaise</creator><creator>Shen, Xuemin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-8719-501X</orcidid><orcidid>https://orcid.org/0000-0002-4140-287X</orcidid><orcidid>https://orcid.org/0000-0002-8000-4161</orcidid><orcidid>https://orcid.org/0000-0002-0396-1347</orcidid><orcidid>https://orcid.org/0000-0002-4349-144X</orcidid></search><sort><creationdate>20221215</creationdate><title>Electricity-Theft Detection for Change-and-Transmit Advanced Metering Infrastructure</title><author>Ibrahem, Mohamed I. ; Mahmoud, Mohamed M. E. A. ; Alsolami, Fawaz ; Alasmary, Waleed ; AL-Ghamdi, Abdullah Saad AL-Malaise ; Shen, Xuemin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c341t-acdd817943cbcd370bb8d220451e84a504ef9b66babf0e963f9c16fa3ec273223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Advanced metering infrastructure</topic><topic>Change and transmit approach is adopted in AMI (CAT AMI) network</topic><topic>Customers</topic><topic>Cyberattack</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Detectors</topic><topic>Electricity</topic><topic>electricity-theft cyberattacks</topic><topic>electricity-theft detection</topic><topic>Energy management</topic><topic>False alarms</topic><topic>Feature extraction</topic><topic>Internet of Things</topic><topic>Performance evaluation</topic><topic>Power consumption</topic><topic>Power demand</topic><topic>Robbery</topic><topic>Sensors</topic><topic>smart grid (SG)</topic><topic>Smart grids</topic><topic>Theft</topic><toplevel>online_resources</toplevel><creatorcontrib>Ibrahem, Mohamed I.</creatorcontrib><creatorcontrib>Mahmoud, Mohamed M. E. A.</creatorcontrib><creatorcontrib>Alsolami, Fawaz</creatorcontrib><creatorcontrib>Alasmary, Waleed</creatorcontrib><creatorcontrib>AL-Ghamdi, Abdullah Saad AL-Malaise</creatorcontrib><creatorcontrib>Shen, Xuemin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE internet of things journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ibrahem, Mohamed I.</au><au>Mahmoud, Mohamed M. E. A.</au><au>Alsolami, Fawaz</au><au>Alasmary, Waleed</au><au>AL-Ghamdi, Abdullah Saad AL-Malaise</au><au>Shen, Xuemin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electricity-Theft Detection for Change-and-Transmit Advanced Metering Infrastructure</atitle><jtitle>IEEE internet of things journal</jtitle><stitle>JIoT</stitle><date>2022-12-15</date><risdate>2022</risdate><volume>9</volume><issue>24</issue><spage>25565</spage><epage>25580</epage><pages>25565-25580</pages><issn>2327-4662</issn><eissn>2327-4662</eissn><coden>IITJAU</coden><abstract>The periodic transmission of the customers' power consumption readings in the advanced metering infrastructure (AMI) is essential for energy management and billing. To collect the readings efficiently, the change and transmit approach is adopted in AMI (CAT AMI) so that the readings are reported only when there is enough change in the consumption. However, CAT AMI suffers from malicious customers who launch electricity-theft cyberattacks by manipulating their readings to illegally reduce their bills. These attacks can cause hefty financial losses and degrade the grid performance because the readings are used for grid management. In this article, the electricity-theft problem in CAT AMI networks is investigated. We first process a real power consumption readings data set to create a benign data set and propose a new set of cyberattacks to create malicious samples. We then develop a deep-learning-based electricity-theft detection solution to identify malicious customers for the CAT AMI network. The proposed detector uses both the customers' transmission pattern and CAT readings to learn the correlation between them in order to enhance the detector's ability in identifying electricity thefts. We conduct extensive experiments to evaluate the performance of our electricity-theft detector, and the results indicate that our detector can accurately detect malicious customers and achieve higher detection rate and lower false alarm than the detectors that are trained only on the CAT readings.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JIOT.2022.3197805</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-8719-501X</orcidid><orcidid>https://orcid.org/0000-0002-4140-287X</orcidid><orcidid>https://orcid.org/0000-0002-8000-4161</orcidid><orcidid>https://orcid.org/0000-0002-0396-1347</orcidid><orcidid>https://orcid.org/0000-0002-4349-144X</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2327-4662
ispartof IEEE internet of things journal, 2022-12, Vol.9 (24), p.25565-25580
issn 2327-4662
2327-4662
language eng
recordid cdi_crossref_primary_10_1109_JIOT_2022_3197805
source IEEE Electronic Library (IEL)
subjects Advanced metering infrastructure
Change and transmit approach is adopted in AMI (CAT AMI) network
Customers
Cyberattack
Datasets
Deep learning
Detectors
Electricity
electricity-theft cyberattacks
electricity-theft detection
Energy management
False alarms
Feature extraction
Internet of Things
Performance evaluation
Power consumption
Power demand
Robbery
Sensors
smart grid (SG)
Smart grids
Theft
title Electricity-Theft Detection for Change-and-Transmit Advanced Metering Infrastructure
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T02%3A37%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electricity-Theft%20Detection%20for%20Change-and-Transmit%20Advanced%20Metering%20Infrastructure&rft.jtitle=IEEE%20internet%20of%20things%20journal&rft.au=Ibrahem,%20Mohamed%20I.&rft.date=2022-12-15&rft.volume=9&rft.issue=24&rft.spage=25565&rft.epage=25580&rft.pages=25565-25580&rft.issn=2327-4662&rft.eissn=2327-4662&rft.coden=IITJAU&rft_id=info:doi/10.1109/JIOT.2022.3197805&rft_dat=%3Cproquest_RIE%3E2747609386%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2747609386&rft_id=info:pmid/&rft_ieee_id=9861263&rfr_iscdi=true