Electricity-Theft Detection for Change-and-Transmit Advanced Metering Infrastructure
The periodic transmission of the customers' power consumption readings in the advanced metering infrastructure (AMI) is essential for energy management and billing. To collect the readings efficiently, the change and transmit approach is adopted in AMI (CAT AMI) so that the readings are reporte...
Gespeichert in:
Veröffentlicht in: | IEEE internet of things journal 2022-12, Vol.9 (24), p.25565-25580 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 25580 |
---|---|
container_issue | 24 |
container_start_page | 25565 |
container_title | IEEE internet of things journal |
container_volume | 9 |
creator | Ibrahem, Mohamed I. Mahmoud, Mohamed M. E. A. Alsolami, Fawaz Alasmary, Waleed AL-Ghamdi, Abdullah Saad AL-Malaise Shen, Xuemin |
description | The periodic transmission of the customers' power consumption readings in the advanced metering infrastructure (AMI) is essential for energy management and billing. To collect the readings efficiently, the change and transmit approach is adopted in AMI (CAT AMI) so that the readings are reported only when there is enough change in the consumption. However, CAT AMI suffers from malicious customers who launch electricity-theft cyberattacks by manipulating their readings to illegally reduce their bills. These attacks can cause hefty financial losses and degrade the grid performance because the readings are used for grid management. In this article, the electricity-theft problem in CAT AMI networks is investigated. We first process a real power consumption readings data set to create a benign data set and propose a new set of cyberattacks to create malicious samples. We then develop a deep-learning-based electricity-theft detection solution to identify malicious customers for the CAT AMI network. The proposed detector uses both the customers' transmission pattern and CAT readings to learn the correlation between them in order to enhance the detector's ability in identifying electricity thefts. We conduct extensive experiments to evaluate the performance of our electricity-theft detector, and the results indicate that our detector can accurately detect malicious customers and achieve higher detection rate and lower false alarm than the detectors that are trained only on the CAT readings. |
doi_str_mv | 10.1109/JIOT.2022.3197805 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JIOT_2022_3197805</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9861263</ieee_id><sourcerecordid>2747609386</sourcerecordid><originalsourceid>FETCH-LOGICAL-c341t-acdd817943cbcd370bb8d220451e84a504ef9b66babf0e963f9c16fa3ec273223</originalsourceid><addsrcrecordid>eNpNkE1LAzEQhoMoWGp_gHhZ8Jyar81ujqVWrVR6Wc8hm520W9psTbJC_71bKuJpXobnnYEHoXtKppQS9fS-XFdTRhibcqqKkuRXaMQ4K7CQkl3_y7doEuOOEDLUcqrkCFWLPdgUWtumE6624FL2DGlYtZ3PXBey-db4DWDjG1wF4-OhTdms-TbeQpN9DGho_SZbehdMTKG3qQ9wh26c2UeY_M4x-nxZVPM3vFq_LuezFbZc0ISNbZqSFkpwW9uGF6Suy4YxInIKpTA5EeBULWVtakdASe6UpdIZDpYVnDE-Ro-Xu8fQffUQk951ffDDS80KUUiieCkHil4oG7oYAzh9DO3BhJOmRJ_96bM_ffanf_0NnYdLpwWAP16VkjLJ-Q-foWxq</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2747609386</pqid></control><display><type>article</type><title>Electricity-Theft Detection for Change-and-Transmit Advanced Metering Infrastructure</title><source>IEEE Electronic Library (IEL)</source><creator>Ibrahem, Mohamed I. ; Mahmoud, Mohamed M. E. A. ; Alsolami, Fawaz ; Alasmary, Waleed ; AL-Ghamdi, Abdullah Saad AL-Malaise ; Shen, Xuemin</creator><creatorcontrib>Ibrahem, Mohamed I. ; Mahmoud, Mohamed M. E. A. ; Alsolami, Fawaz ; Alasmary, Waleed ; AL-Ghamdi, Abdullah Saad AL-Malaise ; Shen, Xuemin</creatorcontrib><description>The periodic transmission of the customers' power consumption readings in the advanced metering infrastructure (AMI) is essential for energy management and billing. To collect the readings efficiently, the change and transmit approach is adopted in AMI (CAT AMI) so that the readings are reported only when there is enough change in the consumption. However, CAT AMI suffers from malicious customers who launch electricity-theft cyberattacks by manipulating their readings to illegally reduce their bills. These attacks can cause hefty financial losses and degrade the grid performance because the readings are used for grid management. In this article, the electricity-theft problem in CAT AMI networks is investigated. We first process a real power consumption readings data set to create a benign data set and propose a new set of cyberattacks to create malicious samples. We then develop a deep-learning-based electricity-theft detection solution to identify malicious customers for the CAT AMI network. The proposed detector uses both the customers' transmission pattern and CAT readings to learn the correlation between them in order to enhance the detector's ability in identifying electricity thefts. We conduct extensive experiments to evaluate the performance of our electricity-theft detector, and the results indicate that our detector can accurately detect malicious customers and achieve higher detection rate and lower false alarm than the detectors that are trained only on the CAT readings.</description><identifier>ISSN: 2327-4662</identifier><identifier>EISSN: 2327-4662</identifier><identifier>DOI: 10.1109/JIOT.2022.3197805</identifier><identifier>CODEN: IITJAU</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Advanced metering infrastructure ; Change and transmit approach is adopted in AMI (CAT AMI) network ; Customers ; Cyberattack ; Datasets ; Deep learning ; Detectors ; Electricity ; electricity-theft cyberattacks ; electricity-theft detection ; Energy management ; False alarms ; Feature extraction ; Internet of Things ; Performance evaluation ; Power consumption ; Power demand ; Robbery ; Sensors ; smart grid (SG) ; Smart grids ; Theft</subject><ispartof>IEEE internet of things journal, 2022-12, Vol.9 (24), p.25565-25580</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c341t-acdd817943cbcd370bb8d220451e84a504ef9b66babf0e963f9c16fa3ec273223</citedby><cites>FETCH-LOGICAL-c341t-acdd817943cbcd370bb8d220451e84a504ef9b66babf0e963f9c16fa3ec273223</cites><orcidid>0000-0002-8719-501X ; 0000-0002-4140-287X ; 0000-0002-8000-4161 ; 0000-0002-0396-1347 ; 0000-0002-4349-144X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9861263$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9861263$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ibrahem, Mohamed I.</creatorcontrib><creatorcontrib>Mahmoud, Mohamed M. E. A.</creatorcontrib><creatorcontrib>Alsolami, Fawaz</creatorcontrib><creatorcontrib>Alasmary, Waleed</creatorcontrib><creatorcontrib>AL-Ghamdi, Abdullah Saad AL-Malaise</creatorcontrib><creatorcontrib>Shen, Xuemin</creatorcontrib><title>Electricity-Theft Detection for Change-and-Transmit Advanced Metering Infrastructure</title><title>IEEE internet of things journal</title><addtitle>JIoT</addtitle><description>The periodic transmission of the customers' power consumption readings in the advanced metering infrastructure (AMI) is essential for energy management and billing. To collect the readings efficiently, the change and transmit approach is adopted in AMI (CAT AMI) so that the readings are reported only when there is enough change in the consumption. However, CAT AMI suffers from malicious customers who launch electricity-theft cyberattacks by manipulating their readings to illegally reduce their bills. These attacks can cause hefty financial losses and degrade the grid performance because the readings are used for grid management. In this article, the electricity-theft problem in CAT AMI networks is investigated. We first process a real power consumption readings data set to create a benign data set and propose a new set of cyberattacks to create malicious samples. We then develop a deep-learning-based electricity-theft detection solution to identify malicious customers for the CAT AMI network. The proposed detector uses both the customers' transmission pattern and CAT readings to learn the correlation between them in order to enhance the detector's ability in identifying electricity thefts. We conduct extensive experiments to evaluate the performance of our electricity-theft detector, and the results indicate that our detector can accurately detect malicious customers and achieve higher detection rate and lower false alarm than the detectors that are trained only on the CAT readings.</description><subject>Advanced metering infrastructure</subject><subject>Change and transmit approach is adopted in AMI (CAT AMI) network</subject><subject>Customers</subject><subject>Cyberattack</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Detectors</subject><subject>Electricity</subject><subject>electricity-theft cyberattacks</subject><subject>electricity-theft detection</subject><subject>Energy management</subject><subject>False alarms</subject><subject>Feature extraction</subject><subject>Internet of Things</subject><subject>Performance evaluation</subject><subject>Power consumption</subject><subject>Power demand</subject><subject>Robbery</subject><subject>Sensors</subject><subject>smart grid (SG)</subject><subject>Smart grids</subject><subject>Theft</subject><issn>2327-4662</issn><issn>2327-4662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1LAzEQhoMoWGp_gHhZ8Jyar81ujqVWrVR6Wc8hm520W9psTbJC_71bKuJpXobnnYEHoXtKppQS9fS-XFdTRhibcqqKkuRXaMQ4K7CQkl3_y7doEuOOEDLUcqrkCFWLPdgUWtumE6624FL2DGlYtZ3PXBey-db4DWDjG1wF4-OhTdms-TbeQpN9DGho_SZbehdMTKG3qQ9wh26c2UeY_M4x-nxZVPM3vFq_LuezFbZc0ISNbZqSFkpwW9uGF6Suy4YxInIKpTA5EeBULWVtakdASe6UpdIZDpYVnDE-Ro-Xu8fQffUQk951ffDDS80KUUiieCkHil4oG7oYAzh9DO3BhJOmRJ_96bM_ffanf_0NnYdLpwWAP16VkjLJ-Q-foWxq</recordid><startdate>20221215</startdate><enddate>20221215</enddate><creator>Ibrahem, Mohamed I.</creator><creator>Mahmoud, Mohamed M. E. A.</creator><creator>Alsolami, Fawaz</creator><creator>Alasmary, Waleed</creator><creator>AL-Ghamdi, Abdullah Saad AL-Malaise</creator><creator>Shen, Xuemin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-8719-501X</orcidid><orcidid>https://orcid.org/0000-0002-4140-287X</orcidid><orcidid>https://orcid.org/0000-0002-8000-4161</orcidid><orcidid>https://orcid.org/0000-0002-0396-1347</orcidid><orcidid>https://orcid.org/0000-0002-4349-144X</orcidid></search><sort><creationdate>20221215</creationdate><title>Electricity-Theft Detection for Change-and-Transmit Advanced Metering Infrastructure</title><author>Ibrahem, Mohamed I. ; Mahmoud, Mohamed M. E. A. ; Alsolami, Fawaz ; Alasmary, Waleed ; AL-Ghamdi, Abdullah Saad AL-Malaise ; Shen, Xuemin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c341t-acdd817943cbcd370bb8d220451e84a504ef9b66babf0e963f9c16fa3ec273223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Advanced metering infrastructure</topic><topic>Change and transmit approach is adopted in AMI (CAT AMI) network</topic><topic>Customers</topic><topic>Cyberattack</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Detectors</topic><topic>Electricity</topic><topic>electricity-theft cyberattacks</topic><topic>electricity-theft detection</topic><topic>Energy management</topic><topic>False alarms</topic><topic>Feature extraction</topic><topic>Internet of Things</topic><topic>Performance evaluation</topic><topic>Power consumption</topic><topic>Power demand</topic><topic>Robbery</topic><topic>Sensors</topic><topic>smart grid (SG)</topic><topic>Smart grids</topic><topic>Theft</topic><toplevel>online_resources</toplevel><creatorcontrib>Ibrahem, Mohamed I.</creatorcontrib><creatorcontrib>Mahmoud, Mohamed M. E. A.</creatorcontrib><creatorcontrib>Alsolami, Fawaz</creatorcontrib><creatorcontrib>Alasmary, Waleed</creatorcontrib><creatorcontrib>AL-Ghamdi, Abdullah Saad AL-Malaise</creatorcontrib><creatorcontrib>Shen, Xuemin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE internet of things journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ibrahem, Mohamed I.</au><au>Mahmoud, Mohamed M. E. A.</au><au>Alsolami, Fawaz</au><au>Alasmary, Waleed</au><au>AL-Ghamdi, Abdullah Saad AL-Malaise</au><au>Shen, Xuemin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electricity-Theft Detection for Change-and-Transmit Advanced Metering Infrastructure</atitle><jtitle>IEEE internet of things journal</jtitle><stitle>JIoT</stitle><date>2022-12-15</date><risdate>2022</risdate><volume>9</volume><issue>24</issue><spage>25565</spage><epage>25580</epage><pages>25565-25580</pages><issn>2327-4662</issn><eissn>2327-4662</eissn><coden>IITJAU</coden><abstract>The periodic transmission of the customers' power consumption readings in the advanced metering infrastructure (AMI) is essential for energy management and billing. To collect the readings efficiently, the change and transmit approach is adopted in AMI (CAT AMI) so that the readings are reported only when there is enough change in the consumption. However, CAT AMI suffers from malicious customers who launch electricity-theft cyberattacks by manipulating their readings to illegally reduce their bills. These attacks can cause hefty financial losses and degrade the grid performance because the readings are used for grid management. In this article, the electricity-theft problem in CAT AMI networks is investigated. We first process a real power consumption readings data set to create a benign data set and propose a new set of cyberattacks to create malicious samples. We then develop a deep-learning-based electricity-theft detection solution to identify malicious customers for the CAT AMI network. The proposed detector uses both the customers' transmission pattern and CAT readings to learn the correlation between them in order to enhance the detector's ability in identifying electricity thefts. We conduct extensive experiments to evaluate the performance of our electricity-theft detector, and the results indicate that our detector can accurately detect malicious customers and achieve higher detection rate and lower false alarm than the detectors that are trained only on the CAT readings.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JIOT.2022.3197805</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-8719-501X</orcidid><orcidid>https://orcid.org/0000-0002-4140-287X</orcidid><orcidid>https://orcid.org/0000-0002-8000-4161</orcidid><orcidid>https://orcid.org/0000-0002-0396-1347</orcidid><orcidid>https://orcid.org/0000-0002-4349-144X</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2327-4662 |
ispartof | IEEE internet of things journal, 2022-12, Vol.9 (24), p.25565-25580 |
issn | 2327-4662 2327-4662 |
language | eng |
recordid | cdi_crossref_primary_10_1109_JIOT_2022_3197805 |
source | IEEE Electronic Library (IEL) |
subjects | Advanced metering infrastructure Change and transmit approach is adopted in AMI (CAT AMI) network Customers Cyberattack Datasets Deep learning Detectors Electricity electricity-theft cyberattacks electricity-theft detection Energy management False alarms Feature extraction Internet of Things Performance evaluation Power consumption Power demand Robbery Sensors smart grid (SG) Smart grids Theft |
title | Electricity-Theft Detection for Change-and-Transmit Advanced Metering Infrastructure |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T02%3A37%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electricity-Theft%20Detection%20for%20Change-and-Transmit%20Advanced%20Metering%20Infrastructure&rft.jtitle=IEEE%20internet%20of%20things%20journal&rft.au=Ibrahem,%20Mohamed%20I.&rft.date=2022-12-15&rft.volume=9&rft.issue=24&rft.spage=25565&rft.epage=25580&rft.pages=25565-25580&rft.issn=2327-4662&rft.eissn=2327-4662&rft.coden=IITJAU&rft_id=info:doi/10.1109/JIOT.2022.3197805&rft_dat=%3Cproquest_RIE%3E2747609386%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2747609386&rft_id=info:pmid/&rft_ieee_id=9861263&rfr_iscdi=true |