Energy-Efficient Wake-Up Signalling for Machine-Type Devices Based on Traffic-Aware Long Short-Term Memory Prediction
Reducing energy consumption is a pressing issue in low-power machine-type communication (MTC) networks. In this regard, the Wake-up Signal (WuS) technology, which aims to minimize the energy consumed by the radio interface of the machine-type devices (MTDs), stands as a promising solution. However,...
Gespeichert in:
Veröffentlicht in: | IEEE internet of things journal 2022-11, Vol.9 (21), p.21620-21631 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 21631 |
---|---|
container_issue | 21 |
container_start_page | 21620 |
container_title | IEEE internet of things journal |
container_volume | 9 |
creator | Ruiz-Guirola, David E. Rodriguez-Lopez, Carlos A. Montejo-Sanchez, Samuel Souza, Richard Demo Lopez, Onel L. A. Alves, Hirley |
description | Reducing energy consumption is a pressing issue in low-power machine-type communication (MTC) networks. In this regard, the Wake-up Signal (WuS) technology, which aims to minimize the energy consumed by the radio interface of the machine-type devices (MTDs), stands as a promising solution. However, state-of-the-art WuS mechanisms use static operational parameters, so they cannot efficiently adapt to the system dynamics. To overcome this, we design a simple but efficient neural network to predict MTC traffic patterns and configure WuS accordingly. Our proposed forecasting WuS (FWuS) leverages an accurate long short-term memory (LSTM)-based traffic prediction that allows extending the sleep time of MTDs by avoiding frequent page monitoring occasions in the idle state. Simulation results show the effectiveness of our approach. The traffic prediction errors are shown to be below 4%, being a false-alarm and miss-detection probabilities, respectively, below 8.8% and 1.3%. In terms of energy consumption reduction, FWuS can outperform the best benchmark mechanism by up to 32%. Finally, we certify the ability of FWuS to dynamically adapt to traffic density changes, promoting low-power MTC scalability. |
doi_str_mv | 10.1109/JIOT.2022.3181889 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JIOT_2022_3181889</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9792254</ieee_id><sourcerecordid>2727046827</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-2e5eb926ad6c1173f95f5babe65f5fb9c2e179e606eb457939420aa6c1a57a173</originalsourceid><addsrcrecordid>eNpNkFFPwjAUhRujiQT5AcaXJj4X227r1kdEVAwEE0Z8XLpyB0VYZzs0-_dugRifzn34vpPcg9Ato0PGqHx4my7SIaecDwOWsCSRF6jHAx6TUAh--e--RgPvd5TSVouYFD10nJTgNg2ZFIXRBsoaf6hPIKsKL82mVPu9KTe4sA7Pld6aEkjaVICf4Nto8PhReVhjW-LUqa6AjH6UAzyzrbTcWleTFNwBz-FgXYPfHayNro0tb9BVofYeBufso9XzJB2_ktniZToezYgOAlETDhHkkgu1FpqxOChkVES5ykG0WeRSc2CxBEEF5GEUy0CGnCrVwiqKVSv00f2pt3L26wi-znb26Nq3fMZjHtNQJLyj2InSznrvoMgqZw7KNRmjWTdw1g2cdQNn54Fb5-7kGAD442UsOY_C4BcU_nbe</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2727046827</pqid></control><display><type>article</type><title>Energy-Efficient Wake-Up Signalling for Machine-Type Devices Based on Traffic-Aware Long Short-Term Memory Prediction</title><source>IEEE Electronic Library (IEL)</source><creator>Ruiz-Guirola, David E. ; Rodriguez-Lopez, Carlos A. ; Montejo-Sanchez, Samuel ; Souza, Richard Demo ; Lopez, Onel L. A. ; Alves, Hirley</creator><creatorcontrib>Ruiz-Guirola, David E. ; Rodriguez-Lopez, Carlos A. ; Montejo-Sanchez, Samuel ; Souza, Richard Demo ; Lopez, Onel L. A. ; Alves, Hirley</creatorcontrib><description>Reducing energy consumption is a pressing issue in low-power machine-type communication (MTC) networks. In this regard, the Wake-up Signal (WuS) technology, which aims to minimize the energy consumed by the radio interface of the machine-type devices (MTDs), stands as a promising solution. However, state-of-the-art WuS mechanisms use static operational parameters, so they cannot efficiently adapt to the system dynamics. To overcome this, we design a simple but efficient neural network to predict MTC traffic patterns and configure WuS accordingly. Our proposed forecasting WuS (FWuS) leverages an accurate long short-term memory (LSTM)-based traffic prediction that allows extending the sleep time of MTDs by avoiding frequent page monitoring occasions in the idle state. Simulation results show the effectiveness of our approach. The traffic prediction errors are shown to be below 4%, being a false-alarm and miss-detection probabilities, respectively, below 8.8% and 1.3%. In terms of energy consumption reduction, FWuS can outperform the best benchmark mechanism by up to 32%. Finally, we certify the ability of FWuS to dynamically adapt to traffic density changes, promoting low-power MTC scalability.</description><identifier>ISSN: 2327-4662</identifier><identifier>EISSN: 2327-4662</identifier><identifier>DOI: 10.1109/JIOT.2022.3181889</identifier><identifier>CODEN: IITJAU</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Delays ; Energy consumption ; Energy efficiency ; False alarms ; Forecasting ; Internet of Things ; machine-type communication (MTC) ; neural network (NN) ; Neural networks ; Power demand ; Power management ; Predictive models ; Symbols ; System dynamics ; traffic prediction ; Traffic volume ; wake-up signal (WuS)</subject><ispartof>IEEE internet of things journal, 2022-11, Vol.9 (21), p.21620-21631</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-2e5eb926ad6c1173f95f5babe65f5fb9c2e179e606eb457939420aa6c1a57a173</citedby><cites>FETCH-LOGICAL-c336t-2e5eb926ad6c1173f95f5babe65f5fb9c2e179e606eb457939420aa6c1a57a173</cites><orcidid>0000-0003-1622-3180 ; 0000-0002-7389-6245 ; 0000-0002-8689-5313 ; 0000-0003-1838-5183</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9792254$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,27926,27927,54760</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9792254$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ruiz-Guirola, David E.</creatorcontrib><creatorcontrib>Rodriguez-Lopez, Carlos A.</creatorcontrib><creatorcontrib>Montejo-Sanchez, Samuel</creatorcontrib><creatorcontrib>Souza, Richard Demo</creatorcontrib><creatorcontrib>Lopez, Onel L. A.</creatorcontrib><creatorcontrib>Alves, Hirley</creatorcontrib><title>Energy-Efficient Wake-Up Signalling for Machine-Type Devices Based on Traffic-Aware Long Short-Term Memory Prediction</title><title>IEEE internet of things journal</title><addtitle>JIoT</addtitle><description>Reducing energy consumption is a pressing issue in low-power machine-type communication (MTC) networks. In this regard, the Wake-up Signal (WuS) technology, which aims to minimize the energy consumed by the radio interface of the machine-type devices (MTDs), stands as a promising solution. However, state-of-the-art WuS mechanisms use static operational parameters, so they cannot efficiently adapt to the system dynamics. To overcome this, we design a simple but efficient neural network to predict MTC traffic patterns and configure WuS accordingly. Our proposed forecasting WuS (FWuS) leverages an accurate long short-term memory (LSTM)-based traffic prediction that allows extending the sleep time of MTDs by avoiding frequent page monitoring occasions in the idle state. Simulation results show the effectiveness of our approach. The traffic prediction errors are shown to be below 4%, being a false-alarm and miss-detection probabilities, respectively, below 8.8% and 1.3%. In terms of energy consumption reduction, FWuS can outperform the best benchmark mechanism by up to 32%. Finally, we certify the ability of FWuS to dynamically adapt to traffic density changes, promoting low-power MTC scalability.</description><subject>Delays</subject><subject>Energy consumption</subject><subject>Energy efficiency</subject><subject>False alarms</subject><subject>Forecasting</subject><subject>Internet of Things</subject><subject>machine-type communication (MTC)</subject><subject>neural network (NN)</subject><subject>Neural networks</subject><subject>Power demand</subject><subject>Power management</subject><subject>Predictive models</subject><subject>Symbols</subject><subject>System dynamics</subject><subject>traffic prediction</subject><subject>Traffic volume</subject><subject>wake-up signal (WuS)</subject><issn>2327-4662</issn><issn>2327-4662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkFFPwjAUhRujiQT5AcaXJj4X227r1kdEVAwEE0Z8XLpyB0VYZzs0-_dugRifzn34vpPcg9Ato0PGqHx4my7SIaecDwOWsCSRF6jHAx6TUAh--e--RgPvd5TSVouYFD10nJTgNg2ZFIXRBsoaf6hPIKsKL82mVPu9KTe4sA7Pld6aEkjaVICf4Nto8PhReVhjW-LUqa6AjH6UAzyzrbTcWleTFNwBz-FgXYPfHayNro0tb9BVofYeBufso9XzJB2_ktniZToezYgOAlETDhHkkgu1FpqxOChkVES5ykG0WeRSc2CxBEEF5GEUy0CGnCrVwiqKVSv00f2pt3L26wi-znb26Nq3fMZjHtNQJLyj2InSznrvoMgqZw7KNRmjWTdw1g2cdQNn54Fb5-7kGAD442UsOY_C4BcU_nbe</recordid><startdate>20221101</startdate><enddate>20221101</enddate><creator>Ruiz-Guirola, David E.</creator><creator>Rodriguez-Lopez, Carlos A.</creator><creator>Montejo-Sanchez, Samuel</creator><creator>Souza, Richard Demo</creator><creator>Lopez, Onel L. A.</creator><creator>Alves, Hirley</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-1622-3180</orcidid><orcidid>https://orcid.org/0000-0002-7389-6245</orcidid><orcidid>https://orcid.org/0000-0002-8689-5313</orcidid><orcidid>https://orcid.org/0000-0003-1838-5183</orcidid></search><sort><creationdate>20221101</creationdate><title>Energy-Efficient Wake-Up Signalling for Machine-Type Devices Based on Traffic-Aware Long Short-Term Memory Prediction</title><author>Ruiz-Guirola, David E. ; Rodriguez-Lopez, Carlos A. ; Montejo-Sanchez, Samuel ; Souza, Richard Demo ; Lopez, Onel L. A. ; Alves, Hirley</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-2e5eb926ad6c1173f95f5babe65f5fb9c2e179e606eb457939420aa6c1a57a173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Delays</topic><topic>Energy consumption</topic><topic>Energy efficiency</topic><topic>False alarms</topic><topic>Forecasting</topic><topic>Internet of Things</topic><topic>machine-type communication (MTC)</topic><topic>neural network (NN)</topic><topic>Neural networks</topic><topic>Power demand</topic><topic>Power management</topic><topic>Predictive models</topic><topic>Symbols</topic><topic>System dynamics</topic><topic>traffic prediction</topic><topic>Traffic volume</topic><topic>wake-up signal (WuS)</topic><toplevel>online_resources</toplevel><creatorcontrib>Ruiz-Guirola, David E.</creatorcontrib><creatorcontrib>Rodriguez-Lopez, Carlos A.</creatorcontrib><creatorcontrib>Montejo-Sanchez, Samuel</creatorcontrib><creatorcontrib>Souza, Richard Demo</creatorcontrib><creatorcontrib>Lopez, Onel L. A.</creatorcontrib><creatorcontrib>Alves, Hirley</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE internet of things journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ruiz-Guirola, David E.</au><au>Rodriguez-Lopez, Carlos A.</au><au>Montejo-Sanchez, Samuel</au><au>Souza, Richard Demo</au><au>Lopez, Onel L. A.</au><au>Alves, Hirley</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Energy-Efficient Wake-Up Signalling for Machine-Type Devices Based on Traffic-Aware Long Short-Term Memory Prediction</atitle><jtitle>IEEE internet of things journal</jtitle><stitle>JIoT</stitle><date>2022-11-01</date><risdate>2022</risdate><volume>9</volume><issue>21</issue><spage>21620</spage><epage>21631</epage><pages>21620-21631</pages><issn>2327-4662</issn><eissn>2327-4662</eissn><coden>IITJAU</coden><abstract>Reducing energy consumption is a pressing issue in low-power machine-type communication (MTC) networks. In this regard, the Wake-up Signal (WuS) technology, which aims to minimize the energy consumed by the radio interface of the machine-type devices (MTDs), stands as a promising solution. However, state-of-the-art WuS mechanisms use static operational parameters, so they cannot efficiently adapt to the system dynamics. To overcome this, we design a simple but efficient neural network to predict MTC traffic patterns and configure WuS accordingly. Our proposed forecasting WuS (FWuS) leverages an accurate long short-term memory (LSTM)-based traffic prediction that allows extending the sleep time of MTDs by avoiding frequent page monitoring occasions in the idle state. Simulation results show the effectiveness of our approach. The traffic prediction errors are shown to be below 4%, being a false-alarm and miss-detection probabilities, respectively, below 8.8% and 1.3%. In terms of energy consumption reduction, FWuS can outperform the best benchmark mechanism by up to 32%. Finally, we certify the ability of FWuS to dynamically adapt to traffic density changes, promoting low-power MTC scalability.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JIOT.2022.3181889</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-1622-3180</orcidid><orcidid>https://orcid.org/0000-0002-7389-6245</orcidid><orcidid>https://orcid.org/0000-0002-8689-5313</orcidid><orcidid>https://orcid.org/0000-0003-1838-5183</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2327-4662 |
ispartof | IEEE internet of things journal, 2022-11, Vol.9 (21), p.21620-21631 |
issn | 2327-4662 2327-4662 |
language | eng |
recordid | cdi_crossref_primary_10_1109_JIOT_2022_3181889 |
source | IEEE Electronic Library (IEL) |
subjects | Delays Energy consumption Energy efficiency False alarms Forecasting Internet of Things machine-type communication (MTC) neural network (NN) Neural networks Power demand Power management Predictive models Symbols System dynamics traffic prediction Traffic volume wake-up signal (WuS) |
title | Energy-Efficient Wake-Up Signalling for Machine-Type Devices Based on Traffic-Aware Long Short-Term Memory Prediction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T09%3A01%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Energy-Efficient%20Wake-Up%20Signalling%20for%20Machine-Type%20Devices%20Based%20on%20Traffic-Aware%20Long%20Short-Term%20Memory%20Prediction&rft.jtitle=IEEE%20internet%20of%20things%20journal&rft.au=Ruiz-Guirola,%20David%20E.&rft.date=2022-11-01&rft.volume=9&rft.issue=21&rft.spage=21620&rft.epage=21631&rft.pages=21620-21631&rft.issn=2327-4662&rft.eissn=2327-4662&rft.coden=IITJAU&rft_id=info:doi/10.1109/JIOT.2022.3181889&rft_dat=%3Cproquest_RIE%3E2727046827%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2727046827&rft_id=info:pmid/&rft_ieee_id=9792254&rfr_iscdi=true |