Energy-Efficient Wake-Up Signalling for Machine-Type Devices Based on Traffic-Aware Long Short-Term Memory Prediction

Reducing energy consumption is a pressing issue in low-power machine-type communication (MTC) networks. In this regard, the Wake-up Signal (WuS) technology, which aims to minimize the energy consumed by the radio interface of the machine-type devices (MTDs), stands as a promising solution. However,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE internet of things journal 2022-11, Vol.9 (21), p.21620-21631
Hauptverfasser: Ruiz-Guirola, David E., Rodriguez-Lopez, Carlos A., Montejo-Sanchez, Samuel, Souza, Richard Demo, Lopez, Onel L. A., Alves, Hirley
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 21631
container_issue 21
container_start_page 21620
container_title IEEE internet of things journal
container_volume 9
creator Ruiz-Guirola, David E.
Rodriguez-Lopez, Carlos A.
Montejo-Sanchez, Samuel
Souza, Richard Demo
Lopez, Onel L. A.
Alves, Hirley
description Reducing energy consumption is a pressing issue in low-power machine-type communication (MTC) networks. In this regard, the Wake-up Signal (WuS) technology, which aims to minimize the energy consumed by the radio interface of the machine-type devices (MTDs), stands as a promising solution. However, state-of-the-art WuS mechanisms use static operational parameters, so they cannot efficiently adapt to the system dynamics. To overcome this, we design a simple but efficient neural network to predict MTC traffic patterns and configure WuS accordingly. Our proposed forecasting WuS (FWuS) leverages an accurate long short-term memory (LSTM)-based traffic prediction that allows extending the sleep time of MTDs by avoiding frequent page monitoring occasions in the idle state. Simulation results show the effectiveness of our approach. The traffic prediction errors are shown to be below 4%, being a false-alarm and miss-detection probabilities, respectively, below 8.8% and 1.3%. In terms of energy consumption reduction, FWuS can outperform the best benchmark mechanism by up to 32%. Finally, we certify the ability of FWuS to dynamically adapt to traffic density changes, promoting low-power MTC scalability.
doi_str_mv 10.1109/JIOT.2022.3181889
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JIOT_2022_3181889</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9792254</ieee_id><sourcerecordid>2727046827</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-2e5eb926ad6c1173f95f5babe65f5fb9c2e179e606eb457939420aa6c1a57a173</originalsourceid><addsrcrecordid>eNpNkFFPwjAUhRujiQT5AcaXJj4X227r1kdEVAwEE0Z8XLpyB0VYZzs0-_dugRifzn34vpPcg9Ato0PGqHx4my7SIaecDwOWsCSRF6jHAx6TUAh--e--RgPvd5TSVouYFD10nJTgNg2ZFIXRBsoaf6hPIKsKL82mVPu9KTe4sA7Pld6aEkjaVICf4Nto8PhReVhjW-LUqa6AjH6UAzyzrbTcWleTFNwBz-FgXYPfHayNro0tb9BVofYeBufso9XzJB2_ktniZToezYgOAlETDhHkkgu1FpqxOChkVES5ykG0WeRSc2CxBEEF5GEUy0CGnCrVwiqKVSv00f2pt3L26wi-znb26Nq3fMZjHtNQJLyj2InSznrvoMgqZw7KNRmjWTdw1g2cdQNn54Fb5-7kGAD442UsOY_C4BcU_nbe</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2727046827</pqid></control><display><type>article</type><title>Energy-Efficient Wake-Up Signalling for Machine-Type Devices Based on Traffic-Aware Long Short-Term Memory Prediction</title><source>IEEE Electronic Library (IEL)</source><creator>Ruiz-Guirola, David E. ; Rodriguez-Lopez, Carlos A. ; Montejo-Sanchez, Samuel ; Souza, Richard Demo ; Lopez, Onel L. A. ; Alves, Hirley</creator><creatorcontrib>Ruiz-Guirola, David E. ; Rodriguez-Lopez, Carlos A. ; Montejo-Sanchez, Samuel ; Souza, Richard Demo ; Lopez, Onel L. A. ; Alves, Hirley</creatorcontrib><description>Reducing energy consumption is a pressing issue in low-power machine-type communication (MTC) networks. In this regard, the Wake-up Signal (WuS) technology, which aims to minimize the energy consumed by the radio interface of the machine-type devices (MTDs), stands as a promising solution. However, state-of-the-art WuS mechanisms use static operational parameters, so they cannot efficiently adapt to the system dynamics. To overcome this, we design a simple but efficient neural network to predict MTC traffic patterns and configure WuS accordingly. Our proposed forecasting WuS (FWuS) leverages an accurate long short-term memory (LSTM)-based traffic prediction that allows extending the sleep time of MTDs by avoiding frequent page monitoring occasions in the idle state. Simulation results show the effectiveness of our approach. The traffic prediction errors are shown to be below 4%, being a false-alarm and miss-detection probabilities, respectively, below 8.8% and 1.3%. In terms of energy consumption reduction, FWuS can outperform the best benchmark mechanism by up to 32%. Finally, we certify the ability of FWuS to dynamically adapt to traffic density changes, promoting low-power MTC scalability.</description><identifier>ISSN: 2327-4662</identifier><identifier>EISSN: 2327-4662</identifier><identifier>DOI: 10.1109/JIOT.2022.3181889</identifier><identifier>CODEN: IITJAU</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Delays ; Energy consumption ; Energy efficiency ; False alarms ; Forecasting ; Internet of Things ; machine-type communication (MTC) ; neural network (NN) ; Neural networks ; Power demand ; Power management ; Predictive models ; Symbols ; System dynamics ; traffic prediction ; Traffic volume ; wake-up signal (WuS)</subject><ispartof>IEEE internet of things journal, 2022-11, Vol.9 (21), p.21620-21631</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-2e5eb926ad6c1173f95f5babe65f5fb9c2e179e606eb457939420aa6c1a57a173</citedby><cites>FETCH-LOGICAL-c336t-2e5eb926ad6c1173f95f5babe65f5fb9c2e179e606eb457939420aa6c1a57a173</cites><orcidid>0000-0003-1622-3180 ; 0000-0002-7389-6245 ; 0000-0002-8689-5313 ; 0000-0003-1838-5183</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9792254$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,27926,27927,54760</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9792254$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ruiz-Guirola, David E.</creatorcontrib><creatorcontrib>Rodriguez-Lopez, Carlos A.</creatorcontrib><creatorcontrib>Montejo-Sanchez, Samuel</creatorcontrib><creatorcontrib>Souza, Richard Demo</creatorcontrib><creatorcontrib>Lopez, Onel L. A.</creatorcontrib><creatorcontrib>Alves, Hirley</creatorcontrib><title>Energy-Efficient Wake-Up Signalling for Machine-Type Devices Based on Traffic-Aware Long Short-Term Memory Prediction</title><title>IEEE internet of things journal</title><addtitle>JIoT</addtitle><description>Reducing energy consumption is a pressing issue in low-power machine-type communication (MTC) networks. In this regard, the Wake-up Signal (WuS) technology, which aims to minimize the energy consumed by the radio interface of the machine-type devices (MTDs), stands as a promising solution. However, state-of-the-art WuS mechanisms use static operational parameters, so they cannot efficiently adapt to the system dynamics. To overcome this, we design a simple but efficient neural network to predict MTC traffic patterns and configure WuS accordingly. Our proposed forecasting WuS (FWuS) leverages an accurate long short-term memory (LSTM)-based traffic prediction that allows extending the sleep time of MTDs by avoiding frequent page monitoring occasions in the idle state. Simulation results show the effectiveness of our approach. The traffic prediction errors are shown to be below 4%, being a false-alarm and miss-detection probabilities, respectively, below 8.8% and 1.3%. In terms of energy consumption reduction, FWuS can outperform the best benchmark mechanism by up to 32%. Finally, we certify the ability of FWuS to dynamically adapt to traffic density changes, promoting low-power MTC scalability.</description><subject>Delays</subject><subject>Energy consumption</subject><subject>Energy efficiency</subject><subject>False alarms</subject><subject>Forecasting</subject><subject>Internet of Things</subject><subject>machine-type communication (MTC)</subject><subject>neural network (NN)</subject><subject>Neural networks</subject><subject>Power demand</subject><subject>Power management</subject><subject>Predictive models</subject><subject>Symbols</subject><subject>System dynamics</subject><subject>traffic prediction</subject><subject>Traffic volume</subject><subject>wake-up signal (WuS)</subject><issn>2327-4662</issn><issn>2327-4662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkFFPwjAUhRujiQT5AcaXJj4X227r1kdEVAwEE0Z8XLpyB0VYZzs0-_dugRifzn34vpPcg9Ato0PGqHx4my7SIaecDwOWsCSRF6jHAx6TUAh--e--RgPvd5TSVouYFD10nJTgNg2ZFIXRBsoaf6hPIKsKL82mVPu9KTe4sA7Pld6aEkjaVICf4Nto8PhReVhjW-LUqa6AjH6UAzyzrbTcWleTFNwBz-FgXYPfHayNro0tb9BVofYeBufso9XzJB2_ktniZToezYgOAlETDhHkkgu1FpqxOChkVES5ykG0WeRSc2CxBEEF5GEUy0CGnCrVwiqKVSv00f2pt3L26wi-znb26Nq3fMZjHtNQJLyj2InSznrvoMgqZw7KNRmjWTdw1g2cdQNn54Fb5-7kGAD442UsOY_C4BcU_nbe</recordid><startdate>20221101</startdate><enddate>20221101</enddate><creator>Ruiz-Guirola, David E.</creator><creator>Rodriguez-Lopez, Carlos A.</creator><creator>Montejo-Sanchez, Samuel</creator><creator>Souza, Richard Demo</creator><creator>Lopez, Onel L. A.</creator><creator>Alves, Hirley</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-1622-3180</orcidid><orcidid>https://orcid.org/0000-0002-7389-6245</orcidid><orcidid>https://orcid.org/0000-0002-8689-5313</orcidid><orcidid>https://orcid.org/0000-0003-1838-5183</orcidid></search><sort><creationdate>20221101</creationdate><title>Energy-Efficient Wake-Up Signalling for Machine-Type Devices Based on Traffic-Aware Long Short-Term Memory Prediction</title><author>Ruiz-Guirola, David E. ; Rodriguez-Lopez, Carlos A. ; Montejo-Sanchez, Samuel ; Souza, Richard Demo ; Lopez, Onel L. A. ; Alves, Hirley</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-2e5eb926ad6c1173f95f5babe65f5fb9c2e179e606eb457939420aa6c1a57a173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Delays</topic><topic>Energy consumption</topic><topic>Energy efficiency</topic><topic>False alarms</topic><topic>Forecasting</topic><topic>Internet of Things</topic><topic>machine-type communication (MTC)</topic><topic>neural network (NN)</topic><topic>Neural networks</topic><topic>Power demand</topic><topic>Power management</topic><topic>Predictive models</topic><topic>Symbols</topic><topic>System dynamics</topic><topic>traffic prediction</topic><topic>Traffic volume</topic><topic>wake-up signal (WuS)</topic><toplevel>online_resources</toplevel><creatorcontrib>Ruiz-Guirola, David E.</creatorcontrib><creatorcontrib>Rodriguez-Lopez, Carlos A.</creatorcontrib><creatorcontrib>Montejo-Sanchez, Samuel</creatorcontrib><creatorcontrib>Souza, Richard Demo</creatorcontrib><creatorcontrib>Lopez, Onel L. A.</creatorcontrib><creatorcontrib>Alves, Hirley</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE internet of things journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ruiz-Guirola, David E.</au><au>Rodriguez-Lopez, Carlos A.</au><au>Montejo-Sanchez, Samuel</au><au>Souza, Richard Demo</au><au>Lopez, Onel L. A.</au><au>Alves, Hirley</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Energy-Efficient Wake-Up Signalling for Machine-Type Devices Based on Traffic-Aware Long Short-Term Memory Prediction</atitle><jtitle>IEEE internet of things journal</jtitle><stitle>JIoT</stitle><date>2022-11-01</date><risdate>2022</risdate><volume>9</volume><issue>21</issue><spage>21620</spage><epage>21631</epage><pages>21620-21631</pages><issn>2327-4662</issn><eissn>2327-4662</eissn><coden>IITJAU</coden><abstract>Reducing energy consumption is a pressing issue in low-power machine-type communication (MTC) networks. In this regard, the Wake-up Signal (WuS) technology, which aims to minimize the energy consumed by the radio interface of the machine-type devices (MTDs), stands as a promising solution. However, state-of-the-art WuS mechanisms use static operational parameters, so they cannot efficiently adapt to the system dynamics. To overcome this, we design a simple but efficient neural network to predict MTC traffic patterns and configure WuS accordingly. Our proposed forecasting WuS (FWuS) leverages an accurate long short-term memory (LSTM)-based traffic prediction that allows extending the sleep time of MTDs by avoiding frequent page monitoring occasions in the idle state. Simulation results show the effectiveness of our approach. The traffic prediction errors are shown to be below 4%, being a false-alarm and miss-detection probabilities, respectively, below 8.8% and 1.3%. In terms of energy consumption reduction, FWuS can outperform the best benchmark mechanism by up to 32%. Finally, we certify the ability of FWuS to dynamically adapt to traffic density changes, promoting low-power MTC scalability.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JIOT.2022.3181889</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-1622-3180</orcidid><orcidid>https://orcid.org/0000-0002-7389-6245</orcidid><orcidid>https://orcid.org/0000-0002-8689-5313</orcidid><orcidid>https://orcid.org/0000-0003-1838-5183</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2327-4662
ispartof IEEE internet of things journal, 2022-11, Vol.9 (21), p.21620-21631
issn 2327-4662
2327-4662
language eng
recordid cdi_crossref_primary_10_1109_JIOT_2022_3181889
source IEEE Electronic Library (IEL)
subjects Delays
Energy consumption
Energy efficiency
False alarms
Forecasting
Internet of Things
machine-type communication (MTC)
neural network (NN)
Neural networks
Power demand
Power management
Predictive models
Symbols
System dynamics
traffic prediction
Traffic volume
wake-up signal (WuS)
title Energy-Efficient Wake-Up Signalling for Machine-Type Devices Based on Traffic-Aware Long Short-Term Memory Prediction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T09%3A01%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Energy-Efficient%20Wake-Up%20Signalling%20for%20Machine-Type%20Devices%20Based%20on%20Traffic-Aware%20Long%20Short-Term%20Memory%20Prediction&rft.jtitle=IEEE%20internet%20of%20things%20journal&rft.au=Ruiz-Guirola,%20David%20E.&rft.date=2022-11-01&rft.volume=9&rft.issue=21&rft.spage=21620&rft.epage=21631&rft.pages=21620-21631&rft.issn=2327-4662&rft.eissn=2327-4662&rft.coden=IITJAU&rft_id=info:doi/10.1109/JIOT.2022.3181889&rft_dat=%3Cproquest_RIE%3E2727046827%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2727046827&rft_id=info:pmid/&rft_ieee_id=9792254&rfr_iscdi=true