A Numerical Splitting and Adaptive Privacy Budget-Allocation-Based LDP Mechanism for Privacy Preservation in Blockchain-Powered IoT

Blockchain has gradually attracted widespread attention from the research community of the IoT, due to its decentralization, consistency, and other attributes. It builds a secure and robust system by generating a backup locally for each participant node to collectively maintain the network. However,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE internet of things journal 2023-04, Vol.10 (8), p.6733-6741
Hauptverfasser: Zhang, Kai, Tian, Jiao, Xiao, Hongwang, Zhao, Ying, Zhao, Wenyu, Chen, Jinjun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6741
container_issue 8
container_start_page 6733
container_title IEEE internet of things journal
container_volume 10
creator Zhang, Kai
Tian, Jiao
Xiao, Hongwang
Zhao, Ying
Zhao, Wenyu
Chen, Jinjun
description Blockchain has gradually attracted widespread attention from the research community of the IoT, due to its decentralization, consistency, and other attributes. It builds a secure and robust system by generating a backup locally for each participant node to collectively maintain the network. However, this feature brings some privacy concerns since all nodes can access the chain data, users' sensitive information under risk of leakage. The local differential privacy (LDP) mechanism can be a promising way to address this issue as it implements data perturbation before uploading to the chain. While traditional LDP mechanisms cannot fit well with the blockchain since the requirements of a fixed input range, large data volume, and using the same privacy budget, which are practically difficult in a decentralized environment. To overcome these problems, we propose a novel LDP mechanism to split input numerical data and implement perturbation by digital bits, which does not require a fixed input range and large data volume. In addition, we use an iteration approach to adaptively allocate the privacy budget for different perturbation procedures that minimize the total deviation of perturbed data and increase the data utility. We employ mean estimation as the statistical utility metric under the same and randomized privacy budgets to evaluate the performance of our novel LDP mechanism. The experiment results indicate that the proposed LDP mechanism performs better in different scenarios, and our adaptive privacy budget allocation model can significantly reduce the deviation of the perturbation function to provide high data utility while maintaining privacy.
doi_str_mv 10.1109/JIOT.2022.3145845
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JIOT_2022_3145845</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9691277</ieee_id><sourcerecordid>2797286064</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-dea406fc290e4ae1c2a8e706830f087644066d6495769351aade2d27a64d2bc3</originalsourceid><addsrcrecordid>eNpNkE1PwzAMhisEEtPgByAukTh3JGmatMdtfA0NVoneq5C4I6NrS9IO7cwfJ2PTxMm2_Dy29AbBFcEjQnB6-zxb5COKKR1FhMUJi0-CAY2oCBnn9PRffx5cOrfCGHstJikfBD9j9NqvwRolK_TWVqbrTL1EstZorGXbmQ2gzJqNVFs06fUSunBcVY2SnWnqcCIdaDS_y9ALqA9ZG7dGZWOPRmbBgd38wcjUaOLNTw-aOsyab7BenjX5RXBWysrB5aEOg_zhPp8-hfPF42w6noeKplEXapAM89IPGJgEoqhMQGCeRLjEieDMb7nmLI0FT6OYSKmBaiokZ5q-q2gY3OzPtrb56sF1xarpbe0_FlSkgiYcc-YpsqeUbZyzUBatNWtptwXBxS7tYpd2sUu7OKTtneu9YwDgyKc8JVSI6BdNonuC</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2797286064</pqid></control><display><type>article</type><title>A Numerical Splitting and Adaptive Privacy Budget-Allocation-Based LDP Mechanism for Privacy Preservation in Blockchain-Powered IoT</title><source>IEEE/IET Electronic Library</source><creator>Zhang, Kai ; Tian, Jiao ; Xiao, Hongwang ; Zhao, Ying ; Zhao, Wenyu ; Chen, Jinjun</creator><creatorcontrib>Zhang, Kai ; Tian, Jiao ; Xiao, Hongwang ; Zhao, Ying ; Zhao, Wenyu ; Chen, Jinjun</creatorcontrib><description>Blockchain has gradually attracted widespread attention from the research community of the IoT, due to its decentralization, consistency, and other attributes. It builds a secure and robust system by generating a backup locally for each participant node to collectively maintain the network. However, this feature brings some privacy concerns since all nodes can access the chain data, users' sensitive information under risk of leakage. The local differential privacy (LDP) mechanism can be a promising way to address this issue as it implements data perturbation before uploading to the chain. While traditional LDP mechanisms cannot fit well with the blockchain since the requirements of a fixed input range, large data volume, and using the same privacy budget, which are practically difficult in a decentralized environment. To overcome these problems, we propose a novel LDP mechanism to split input numerical data and implement perturbation by digital bits, which does not require a fixed input range and large data volume. In addition, we use an iteration approach to adaptively allocate the privacy budget for different perturbation procedures that minimize the total deviation of perturbed data and increase the data utility. We employ mean estimation as the statistical utility metric under the same and randomized privacy budgets to evaluate the performance of our novel LDP mechanism. The experiment results indicate that the proposed LDP mechanism performs better in different scenarios, and our adaptive privacy budget allocation model can significantly reduce the deviation of the perturbation function to provide high data utility while maintaining privacy.</description><identifier>ISSN: 2327-4662</identifier><identifier>EISSN: 2327-4662</identifier><identifier>DOI: 10.1109/JIOT.2022.3145845</identifier><identifier>CODEN: IITJAU</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Adaptive privacy budget allocation ; Blockchain ; Blockchains ; Budgets ; Cryptography ; Deviation ; Encoding ; Estimation ; Internet of Things ; Iterative methods ; local differential privacy (LDP) ; mean estimation ; numerical splitting ; Perturbation ; Perturbation methods ; Privacy ; Robustness (mathematics) ; Servers</subject><ispartof>IEEE internet of things journal, 2023-04, Vol.10 (8), p.6733-6741</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-dea406fc290e4ae1c2a8e706830f087644066d6495769351aade2d27a64d2bc3</citedby><cites>FETCH-LOGICAL-c293t-dea406fc290e4ae1c2a8e706830f087644066d6495769351aade2d27a64d2bc3</cites><orcidid>0000-0003-2079-6133 ; 0000-0003-1677-9525</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9691277$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9691277$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhang, Kai</creatorcontrib><creatorcontrib>Tian, Jiao</creatorcontrib><creatorcontrib>Xiao, Hongwang</creatorcontrib><creatorcontrib>Zhao, Ying</creatorcontrib><creatorcontrib>Zhao, Wenyu</creatorcontrib><creatorcontrib>Chen, Jinjun</creatorcontrib><title>A Numerical Splitting and Adaptive Privacy Budget-Allocation-Based LDP Mechanism for Privacy Preservation in Blockchain-Powered IoT</title><title>IEEE internet of things journal</title><addtitle>JIoT</addtitle><description>Blockchain has gradually attracted widespread attention from the research community of the IoT, due to its decentralization, consistency, and other attributes. It builds a secure and robust system by generating a backup locally for each participant node to collectively maintain the network. However, this feature brings some privacy concerns since all nodes can access the chain data, users' sensitive information under risk of leakage. The local differential privacy (LDP) mechanism can be a promising way to address this issue as it implements data perturbation before uploading to the chain. While traditional LDP mechanisms cannot fit well with the blockchain since the requirements of a fixed input range, large data volume, and using the same privacy budget, which are practically difficult in a decentralized environment. To overcome these problems, we propose a novel LDP mechanism to split input numerical data and implement perturbation by digital bits, which does not require a fixed input range and large data volume. In addition, we use an iteration approach to adaptively allocate the privacy budget for different perturbation procedures that minimize the total deviation of perturbed data and increase the data utility. We employ mean estimation as the statistical utility metric under the same and randomized privacy budgets to evaluate the performance of our novel LDP mechanism. The experiment results indicate that the proposed LDP mechanism performs better in different scenarios, and our adaptive privacy budget allocation model can significantly reduce the deviation of the perturbation function to provide high data utility while maintaining privacy.</description><subject>Adaptive privacy budget allocation</subject><subject>Blockchain</subject><subject>Blockchains</subject><subject>Budgets</subject><subject>Cryptography</subject><subject>Deviation</subject><subject>Encoding</subject><subject>Estimation</subject><subject>Internet of Things</subject><subject>Iterative methods</subject><subject>local differential privacy (LDP)</subject><subject>mean estimation</subject><subject>numerical splitting</subject><subject>Perturbation</subject><subject>Perturbation methods</subject><subject>Privacy</subject><subject>Robustness (mathematics)</subject><subject>Servers</subject><issn>2327-4662</issn><issn>2327-4662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1PwzAMhisEEtPgByAukTh3JGmatMdtfA0NVoneq5C4I6NrS9IO7cwfJ2PTxMm2_Dy29AbBFcEjQnB6-zxb5COKKR1FhMUJi0-CAY2oCBnn9PRffx5cOrfCGHstJikfBD9j9NqvwRolK_TWVqbrTL1EstZorGXbmQ2gzJqNVFs06fUSunBcVY2SnWnqcCIdaDS_y9ALqA9ZG7dGZWOPRmbBgd38wcjUaOLNTw-aOsyab7BenjX5RXBWysrB5aEOg_zhPp8-hfPF42w6noeKplEXapAM89IPGJgEoqhMQGCeRLjEieDMb7nmLI0FT6OYSKmBaiokZ5q-q2gY3OzPtrb56sF1xarpbe0_FlSkgiYcc-YpsqeUbZyzUBatNWtptwXBxS7tYpd2sUu7OKTtneu9YwDgyKc8JVSI6BdNonuC</recordid><startdate>20230415</startdate><enddate>20230415</enddate><creator>Zhang, Kai</creator><creator>Tian, Jiao</creator><creator>Xiao, Hongwang</creator><creator>Zhao, Ying</creator><creator>Zhao, Wenyu</creator><creator>Chen, Jinjun</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-2079-6133</orcidid><orcidid>https://orcid.org/0000-0003-1677-9525</orcidid></search><sort><creationdate>20230415</creationdate><title>A Numerical Splitting and Adaptive Privacy Budget-Allocation-Based LDP Mechanism for Privacy Preservation in Blockchain-Powered IoT</title><author>Zhang, Kai ; Tian, Jiao ; Xiao, Hongwang ; Zhao, Ying ; Zhao, Wenyu ; Chen, Jinjun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-dea406fc290e4ae1c2a8e706830f087644066d6495769351aade2d27a64d2bc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Adaptive privacy budget allocation</topic><topic>Blockchain</topic><topic>Blockchains</topic><topic>Budgets</topic><topic>Cryptography</topic><topic>Deviation</topic><topic>Encoding</topic><topic>Estimation</topic><topic>Internet of Things</topic><topic>Iterative methods</topic><topic>local differential privacy (LDP)</topic><topic>mean estimation</topic><topic>numerical splitting</topic><topic>Perturbation</topic><topic>Perturbation methods</topic><topic>Privacy</topic><topic>Robustness (mathematics)</topic><topic>Servers</topic><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Kai</creatorcontrib><creatorcontrib>Tian, Jiao</creatorcontrib><creatorcontrib>Xiao, Hongwang</creatorcontrib><creatorcontrib>Zhao, Ying</creatorcontrib><creatorcontrib>Zhao, Wenyu</creatorcontrib><creatorcontrib>Chen, Jinjun</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE/IET Electronic Library</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE internet of things journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhang, Kai</au><au>Tian, Jiao</au><au>Xiao, Hongwang</au><au>Zhao, Ying</au><au>Zhao, Wenyu</au><au>Chen, Jinjun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Numerical Splitting and Adaptive Privacy Budget-Allocation-Based LDP Mechanism for Privacy Preservation in Blockchain-Powered IoT</atitle><jtitle>IEEE internet of things journal</jtitle><stitle>JIoT</stitle><date>2023-04-15</date><risdate>2023</risdate><volume>10</volume><issue>8</issue><spage>6733</spage><epage>6741</epage><pages>6733-6741</pages><issn>2327-4662</issn><eissn>2327-4662</eissn><coden>IITJAU</coden><abstract>Blockchain has gradually attracted widespread attention from the research community of the IoT, due to its decentralization, consistency, and other attributes. It builds a secure and robust system by generating a backup locally for each participant node to collectively maintain the network. However, this feature brings some privacy concerns since all nodes can access the chain data, users' sensitive information under risk of leakage. The local differential privacy (LDP) mechanism can be a promising way to address this issue as it implements data perturbation before uploading to the chain. While traditional LDP mechanisms cannot fit well with the blockchain since the requirements of a fixed input range, large data volume, and using the same privacy budget, which are practically difficult in a decentralized environment. To overcome these problems, we propose a novel LDP mechanism to split input numerical data and implement perturbation by digital bits, which does not require a fixed input range and large data volume. In addition, we use an iteration approach to adaptively allocate the privacy budget for different perturbation procedures that minimize the total deviation of perturbed data and increase the data utility. We employ mean estimation as the statistical utility metric under the same and randomized privacy budgets to evaluate the performance of our novel LDP mechanism. The experiment results indicate that the proposed LDP mechanism performs better in different scenarios, and our adaptive privacy budget allocation model can significantly reduce the deviation of the perturbation function to provide high data utility while maintaining privacy.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JIOT.2022.3145845</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-2079-6133</orcidid><orcidid>https://orcid.org/0000-0003-1677-9525</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2327-4662
ispartof IEEE internet of things journal, 2023-04, Vol.10 (8), p.6733-6741
issn 2327-4662
2327-4662
language eng
recordid cdi_crossref_primary_10_1109_JIOT_2022_3145845
source IEEE/IET Electronic Library
subjects Adaptive privacy budget allocation
Blockchain
Blockchains
Budgets
Cryptography
Deviation
Encoding
Estimation
Internet of Things
Iterative methods
local differential privacy (LDP)
mean estimation
numerical splitting
Perturbation
Perturbation methods
Privacy
Robustness (mathematics)
Servers
title A Numerical Splitting and Adaptive Privacy Budget-Allocation-Based LDP Mechanism for Privacy Preservation in Blockchain-Powered IoT
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T19%3A08%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Numerical%20Splitting%20and%20Adaptive%20Privacy%20Budget-Allocation-Based%20LDP%20Mechanism%20for%20Privacy%20Preservation%20in%20Blockchain-Powered%20IoT&rft.jtitle=IEEE%20internet%20of%20things%20journal&rft.au=Zhang,%20Kai&rft.date=2023-04-15&rft.volume=10&rft.issue=8&rft.spage=6733&rft.epage=6741&rft.pages=6733-6741&rft.issn=2327-4662&rft.eissn=2327-4662&rft.coden=IITJAU&rft_id=info:doi/10.1109/JIOT.2022.3145845&rft_dat=%3Cproquest_RIE%3E2797286064%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2797286064&rft_id=info:pmid/&rft_ieee_id=9691277&rfr_iscdi=true