UAV-Aided Positioning Systems for Ground Devices: Fundamental Limits and Algorithms

High-precision location information formulates the basis of the modern Internet of Things (IoT). However, since the navigation signals from the global navigation satellite systems (GNSSs) are frequently attenuated or blocked in urban areas, reliable and high accuracy positioning alternatives are thu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE internet of things journal 2022-08, Vol.9 (15), p.13470-13485
Hauptverfasser: Liang, Tianhao, Zhang, Tingting, Yang, Jiayan, Feng, Daquan, Zhang, Qinyu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13485
container_issue 15
container_start_page 13470
container_title IEEE internet of things journal
container_volume 9
creator Liang, Tianhao
Zhang, Tingting
Yang, Jiayan
Feng, Daquan
Zhang, Qinyu
description High-precision location information formulates the basis of the modern Internet of Things (IoT). However, since the navigation signals from the global navigation satellite systems (GNSSs) are frequently attenuated or blocked in urban areas, reliable and high accuracy positioning alternatives are thus required for ground devices (GDs). Due to the advantages of their flexible deployment and extensive coverage, unmanned aerial vehicles (UAVs) show significant potential in this ground localization enhancement system. In this article, we propose a UAV aided positioning (UAP) system for GDs, where the UAVs provide valuable flying Line of Sight (LoS) observations. Specifically, we first give the fundamental limits of the proposed UAP system in terms of the Cramer-Rao low bound (CRLB), where the UAVs are treated as "agents" with unknown positions instead of anchors. Then, we formulate a general UAP method using the nonparametric belief propagation (NBP)-based probabilistic framework, to jointly positioning UAVs and GDs simultaneously. Moreover, a two-step clustering-based solution is given to tackle the data association challenge in the multi-UAV scenarios. We also show that proper data feedback could achieve additional performance advantages without any extra measurements. The optimal multi-UAV deployment strategy is then proposed, by which the potential of the UAP system could be fully characterized. Last but not least, we verify our solutions via numerical simulations and practical experiments, which provide meaningful insights and performance evaluations to the system design and implementations.
doi_str_mv 10.1109/JIOT.2022.3144234
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JIOT_2022_3144234</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9684492</ieee_id><sourcerecordid>2695147115</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-7bc4995e3df82cd531a1df07e0993abe65423b77afbc05d2aea6d4ec19f63813</originalsourceid><addsrcrecordid>eNpNkE9rAjEQxUNpoWL9AKWXQM9r82-zprfFVmsRLGh7DdnNrI24G5usgt--K0rpaWaY9-YxP4TuKRlSStTT-2yxGjLC2JBTIRgXV6jHOMsSISW7_tffokGMG0JIZ0upkj20_My_ktxZsPjDR9c637hmjZfH2EIdceUDnga_byx-gYMrIT7jSTeZGprWbPHc1a6N2HT7fLv2wbXfdbxDN5XZRhhcah-tJq-r8VsyX0xn43yelEzxNsmKUiiVArfViJU25dRQW5EMiFLcFCDT7pUiy0xVlCS1zICRVkBJVSX5iPI-ejyf3QX_s4fY6o3fh6ZL1EyqlIqM0rRT0bOqDD7GAJXeBVebcNSU6BM9faKnT_T0hV7neTh7HAD86ZUcCaEY_wXWjGsA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2695147115</pqid></control><display><type>article</type><title>UAV-Aided Positioning Systems for Ground Devices: Fundamental Limits and Algorithms</title><source>IEEE Xplore</source><creator>Liang, Tianhao ; Zhang, Tingting ; Yang, Jiayan ; Feng, Daquan ; Zhang, Qinyu</creator><creatorcontrib>Liang, Tianhao ; Zhang, Tingting ; Yang, Jiayan ; Feng, Daquan ; Zhang, Qinyu</creatorcontrib><description>High-precision location information formulates the basis of the modern Internet of Things (IoT). However, since the navigation signals from the global navigation satellite systems (GNSSs) are frequently attenuated or blocked in urban areas, reliable and high accuracy positioning alternatives are thus required for ground devices (GDs). Due to the advantages of their flexible deployment and extensive coverage, unmanned aerial vehicles (UAVs) show significant potential in this ground localization enhancement system. In this article, we propose a UAV aided positioning (UAP) system for GDs, where the UAVs provide valuable flying Line of Sight (LoS) observations. Specifically, we first give the fundamental limits of the proposed UAP system in terms of the Cramer-Rao low bound (CRLB), where the UAVs are treated as "agents" with unknown positions instead of anchors. Then, we formulate a general UAP method using the nonparametric belief propagation (NBP)-based probabilistic framework, to jointly positioning UAVs and GDs simultaneously. Moreover, a two-step clustering-based solution is given to tackle the data association challenge in the multi-UAV scenarios. We also show that proper data feedback could achieve additional performance advantages without any extra measurements. The optimal multi-UAV deployment strategy is then proposed, by which the potential of the UAP system could be fully characterized. Last but not least, we verify our solutions via numerical simulations and practical experiments, which provide meaningful insights and performance evaluations to the system design and implementations.</description><identifier>ISSN: 2327-4662</identifier><identifier>EISSN: 2327-4662</identifier><identifier>DOI: 10.1109/JIOT.2022.3144234</identifier><identifier>CODEN: IITJAU</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Autonomous aerial vehicles ; Clustering ; Cramer–Rao lower bound (CRLB) ; data association ; Global navigation satellite system ; high precise location ; Internet of Things ; Internet of Things (IoT) ; Line of sight ; Location awareness ; Navigation satellites ; Performance evaluation ; Radar tracking ; Systems design ; Target tracking ; unmanned aerial vehicle (UAV) ; Unmanned aerial vehicles ; Urban areas ; Wireless communication</subject><ispartof>IEEE internet of things journal, 2022-08, Vol.9 (15), p.13470-13485</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-7bc4995e3df82cd531a1df07e0993abe65423b77afbc05d2aea6d4ec19f63813</citedby><cites>FETCH-LOGICAL-c293t-7bc4995e3df82cd531a1df07e0993abe65423b77afbc05d2aea6d4ec19f63813</cites><orcidid>0000-0002-0667-1150 ; 0000-0003-2585-0290 ; 0000-0001-9272-0475</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9684492$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9684492$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Liang, Tianhao</creatorcontrib><creatorcontrib>Zhang, Tingting</creatorcontrib><creatorcontrib>Yang, Jiayan</creatorcontrib><creatorcontrib>Feng, Daquan</creatorcontrib><creatorcontrib>Zhang, Qinyu</creatorcontrib><title>UAV-Aided Positioning Systems for Ground Devices: Fundamental Limits and Algorithms</title><title>IEEE internet of things journal</title><addtitle>JIoT</addtitle><description>High-precision location information formulates the basis of the modern Internet of Things (IoT). However, since the navigation signals from the global navigation satellite systems (GNSSs) are frequently attenuated or blocked in urban areas, reliable and high accuracy positioning alternatives are thus required for ground devices (GDs). Due to the advantages of their flexible deployment and extensive coverage, unmanned aerial vehicles (UAVs) show significant potential in this ground localization enhancement system. In this article, we propose a UAV aided positioning (UAP) system for GDs, where the UAVs provide valuable flying Line of Sight (LoS) observations. Specifically, we first give the fundamental limits of the proposed UAP system in terms of the Cramer-Rao low bound (CRLB), where the UAVs are treated as "agents" with unknown positions instead of anchors. Then, we formulate a general UAP method using the nonparametric belief propagation (NBP)-based probabilistic framework, to jointly positioning UAVs and GDs simultaneously. Moreover, a two-step clustering-based solution is given to tackle the data association challenge in the multi-UAV scenarios. We also show that proper data feedback could achieve additional performance advantages without any extra measurements. The optimal multi-UAV deployment strategy is then proposed, by which the potential of the UAP system could be fully characterized. Last but not least, we verify our solutions via numerical simulations and practical experiments, which provide meaningful insights and performance evaluations to the system design and implementations.</description><subject>Algorithms</subject><subject>Autonomous aerial vehicles</subject><subject>Clustering</subject><subject>Cramer–Rao lower bound (CRLB)</subject><subject>data association</subject><subject>Global navigation satellite system</subject><subject>high precise location</subject><subject>Internet of Things</subject><subject>Internet of Things (IoT)</subject><subject>Line of sight</subject><subject>Location awareness</subject><subject>Navigation satellites</subject><subject>Performance evaluation</subject><subject>Radar tracking</subject><subject>Systems design</subject><subject>Target tracking</subject><subject>unmanned aerial vehicle (UAV)</subject><subject>Unmanned aerial vehicles</subject><subject>Urban areas</subject><subject>Wireless communication</subject><issn>2327-4662</issn><issn>2327-4662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE9rAjEQxUNpoWL9AKWXQM9r82-zprfFVmsRLGh7DdnNrI24G5usgt--K0rpaWaY9-YxP4TuKRlSStTT-2yxGjLC2JBTIRgXV6jHOMsSISW7_tffokGMG0JIZ0upkj20_My_ktxZsPjDR9c637hmjZfH2EIdceUDnga_byx-gYMrIT7jSTeZGprWbPHc1a6N2HT7fLv2wbXfdbxDN5XZRhhcah-tJq-r8VsyX0xn43yelEzxNsmKUiiVArfViJU25dRQW5EMiFLcFCDT7pUiy0xVlCS1zICRVkBJVSX5iPI-ejyf3QX_s4fY6o3fh6ZL1EyqlIqM0rRT0bOqDD7GAJXeBVebcNSU6BM9faKnT_T0hV7neTh7HAD86ZUcCaEY_wXWjGsA</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Liang, Tianhao</creator><creator>Zhang, Tingting</creator><creator>Yang, Jiayan</creator><creator>Feng, Daquan</creator><creator>Zhang, Qinyu</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-0667-1150</orcidid><orcidid>https://orcid.org/0000-0003-2585-0290</orcidid><orcidid>https://orcid.org/0000-0001-9272-0475</orcidid></search><sort><creationdate>20220801</creationdate><title>UAV-Aided Positioning Systems for Ground Devices: Fundamental Limits and Algorithms</title><author>Liang, Tianhao ; Zhang, Tingting ; Yang, Jiayan ; Feng, Daquan ; Zhang, Qinyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-7bc4995e3df82cd531a1df07e0993abe65423b77afbc05d2aea6d4ec19f63813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Autonomous aerial vehicles</topic><topic>Clustering</topic><topic>Cramer–Rao lower bound (CRLB)</topic><topic>data association</topic><topic>Global navigation satellite system</topic><topic>high precise location</topic><topic>Internet of Things</topic><topic>Internet of Things (IoT)</topic><topic>Line of sight</topic><topic>Location awareness</topic><topic>Navigation satellites</topic><topic>Performance evaluation</topic><topic>Radar tracking</topic><topic>Systems design</topic><topic>Target tracking</topic><topic>unmanned aerial vehicle (UAV)</topic><topic>Unmanned aerial vehicles</topic><topic>Urban areas</topic><topic>Wireless communication</topic><toplevel>online_resources</toplevel><creatorcontrib>Liang, Tianhao</creatorcontrib><creatorcontrib>Zhang, Tingting</creatorcontrib><creatorcontrib>Yang, Jiayan</creatorcontrib><creatorcontrib>Feng, Daquan</creatorcontrib><creatorcontrib>Zhang, Qinyu</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE internet of things journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Liang, Tianhao</au><au>Zhang, Tingting</au><au>Yang, Jiayan</au><au>Feng, Daquan</au><au>Zhang, Qinyu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>UAV-Aided Positioning Systems for Ground Devices: Fundamental Limits and Algorithms</atitle><jtitle>IEEE internet of things journal</jtitle><stitle>JIoT</stitle><date>2022-08-01</date><risdate>2022</risdate><volume>9</volume><issue>15</issue><spage>13470</spage><epage>13485</epage><pages>13470-13485</pages><issn>2327-4662</issn><eissn>2327-4662</eissn><coden>IITJAU</coden><abstract>High-precision location information formulates the basis of the modern Internet of Things (IoT). However, since the navigation signals from the global navigation satellite systems (GNSSs) are frequently attenuated or blocked in urban areas, reliable and high accuracy positioning alternatives are thus required for ground devices (GDs). Due to the advantages of their flexible deployment and extensive coverage, unmanned aerial vehicles (UAVs) show significant potential in this ground localization enhancement system. In this article, we propose a UAV aided positioning (UAP) system for GDs, where the UAVs provide valuable flying Line of Sight (LoS) observations. Specifically, we first give the fundamental limits of the proposed UAP system in terms of the Cramer-Rao low bound (CRLB), where the UAVs are treated as "agents" with unknown positions instead of anchors. Then, we formulate a general UAP method using the nonparametric belief propagation (NBP)-based probabilistic framework, to jointly positioning UAVs and GDs simultaneously. Moreover, a two-step clustering-based solution is given to tackle the data association challenge in the multi-UAV scenarios. We also show that proper data feedback could achieve additional performance advantages without any extra measurements. The optimal multi-UAV deployment strategy is then proposed, by which the potential of the UAP system could be fully characterized. Last but not least, we verify our solutions via numerical simulations and practical experiments, which provide meaningful insights and performance evaluations to the system design and implementations.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JIOT.2022.3144234</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-0667-1150</orcidid><orcidid>https://orcid.org/0000-0003-2585-0290</orcidid><orcidid>https://orcid.org/0000-0001-9272-0475</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2327-4662
ispartof IEEE internet of things journal, 2022-08, Vol.9 (15), p.13470-13485
issn 2327-4662
2327-4662
language eng
recordid cdi_crossref_primary_10_1109_JIOT_2022_3144234
source IEEE Xplore
subjects Algorithms
Autonomous aerial vehicles
Clustering
Cramer–Rao lower bound (CRLB)
data association
Global navigation satellite system
high precise location
Internet of Things
Internet of Things (IoT)
Line of sight
Location awareness
Navigation satellites
Performance evaluation
Radar tracking
Systems design
Target tracking
unmanned aerial vehicle (UAV)
Unmanned aerial vehicles
Urban areas
Wireless communication
title UAV-Aided Positioning Systems for Ground Devices: Fundamental Limits and Algorithms
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T20%3A19%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=UAV-Aided%20Positioning%20Systems%20for%20Ground%20Devices:%20Fundamental%20Limits%20and%20Algorithms&rft.jtitle=IEEE%20internet%20of%20things%20journal&rft.au=Liang,%20Tianhao&rft.date=2022-08-01&rft.volume=9&rft.issue=15&rft.spage=13470&rft.epage=13485&rft.pages=13470-13485&rft.issn=2327-4662&rft.eissn=2327-4662&rft.coden=IITJAU&rft_id=info:doi/10.1109/JIOT.2022.3144234&rft_dat=%3Cproquest_RIE%3E2695147115%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2695147115&rft_id=info:pmid/&rft_ieee_id=9684492&rfr_iscdi=true