UAV-Aided Positioning Systems for Ground Devices: Fundamental Limits and Algorithms
High-precision location information formulates the basis of the modern Internet of Things (IoT). However, since the navigation signals from the global navigation satellite systems (GNSSs) are frequently attenuated or blocked in urban areas, reliable and high accuracy positioning alternatives are thu...
Gespeichert in:
Veröffentlicht in: | IEEE internet of things journal 2022-08, Vol.9 (15), p.13470-13485 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 13485 |
---|---|
container_issue | 15 |
container_start_page | 13470 |
container_title | IEEE internet of things journal |
container_volume | 9 |
creator | Liang, Tianhao Zhang, Tingting Yang, Jiayan Feng, Daquan Zhang, Qinyu |
description | High-precision location information formulates the basis of the modern Internet of Things (IoT). However, since the navigation signals from the global navigation satellite systems (GNSSs) are frequently attenuated or blocked in urban areas, reliable and high accuracy positioning alternatives are thus required for ground devices (GDs). Due to the advantages of their flexible deployment and extensive coverage, unmanned aerial vehicles (UAVs) show significant potential in this ground localization enhancement system. In this article, we propose a UAV aided positioning (UAP) system for GDs, where the UAVs provide valuable flying Line of Sight (LoS) observations. Specifically, we first give the fundamental limits of the proposed UAP system in terms of the Cramer-Rao low bound (CRLB), where the UAVs are treated as "agents" with unknown positions instead of anchors. Then, we formulate a general UAP method using the nonparametric belief propagation (NBP)-based probabilistic framework, to jointly positioning UAVs and GDs simultaneously. Moreover, a two-step clustering-based solution is given to tackle the data association challenge in the multi-UAV scenarios. We also show that proper data feedback could achieve additional performance advantages without any extra measurements. The optimal multi-UAV deployment strategy is then proposed, by which the potential of the UAP system could be fully characterized. Last but not least, we verify our solutions via numerical simulations and practical experiments, which provide meaningful insights and performance evaluations to the system design and implementations. |
doi_str_mv | 10.1109/JIOT.2022.3144234 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JIOT_2022_3144234</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9684492</ieee_id><sourcerecordid>2695147115</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-7bc4995e3df82cd531a1df07e0993abe65423b77afbc05d2aea6d4ec19f63813</originalsourceid><addsrcrecordid>eNpNkE9rAjEQxUNpoWL9AKWXQM9r82-zprfFVmsRLGh7DdnNrI24G5usgt--K0rpaWaY9-YxP4TuKRlSStTT-2yxGjLC2JBTIRgXV6jHOMsSISW7_tffokGMG0JIZ0upkj20_My_ktxZsPjDR9c637hmjZfH2EIdceUDnga_byx-gYMrIT7jSTeZGprWbPHc1a6N2HT7fLv2wbXfdbxDN5XZRhhcah-tJq-r8VsyX0xn43yelEzxNsmKUiiVArfViJU25dRQW5EMiFLcFCDT7pUiy0xVlCS1zICRVkBJVSX5iPI-ejyf3QX_s4fY6o3fh6ZL1EyqlIqM0rRT0bOqDD7GAJXeBVebcNSU6BM9faKnT_T0hV7neTh7HAD86ZUcCaEY_wXWjGsA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2695147115</pqid></control><display><type>article</type><title>UAV-Aided Positioning Systems for Ground Devices: Fundamental Limits and Algorithms</title><source>IEEE Xplore</source><creator>Liang, Tianhao ; Zhang, Tingting ; Yang, Jiayan ; Feng, Daquan ; Zhang, Qinyu</creator><creatorcontrib>Liang, Tianhao ; Zhang, Tingting ; Yang, Jiayan ; Feng, Daquan ; Zhang, Qinyu</creatorcontrib><description>High-precision location information formulates the basis of the modern Internet of Things (IoT). However, since the navigation signals from the global navigation satellite systems (GNSSs) are frequently attenuated or blocked in urban areas, reliable and high accuracy positioning alternatives are thus required for ground devices (GDs). Due to the advantages of their flexible deployment and extensive coverage, unmanned aerial vehicles (UAVs) show significant potential in this ground localization enhancement system. In this article, we propose a UAV aided positioning (UAP) system for GDs, where the UAVs provide valuable flying Line of Sight (LoS) observations. Specifically, we first give the fundamental limits of the proposed UAP system in terms of the Cramer-Rao low bound (CRLB), where the UAVs are treated as "agents" with unknown positions instead of anchors. Then, we formulate a general UAP method using the nonparametric belief propagation (NBP)-based probabilistic framework, to jointly positioning UAVs and GDs simultaneously. Moreover, a two-step clustering-based solution is given to tackle the data association challenge in the multi-UAV scenarios. We also show that proper data feedback could achieve additional performance advantages without any extra measurements. The optimal multi-UAV deployment strategy is then proposed, by which the potential of the UAP system could be fully characterized. Last but not least, we verify our solutions via numerical simulations and practical experiments, which provide meaningful insights and performance evaluations to the system design and implementations.</description><identifier>ISSN: 2327-4662</identifier><identifier>EISSN: 2327-4662</identifier><identifier>DOI: 10.1109/JIOT.2022.3144234</identifier><identifier>CODEN: IITJAU</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Autonomous aerial vehicles ; Clustering ; Cramer–Rao lower bound (CRLB) ; data association ; Global navigation satellite system ; high precise location ; Internet of Things ; Internet of Things (IoT) ; Line of sight ; Location awareness ; Navigation satellites ; Performance evaluation ; Radar tracking ; Systems design ; Target tracking ; unmanned aerial vehicle (UAV) ; Unmanned aerial vehicles ; Urban areas ; Wireless communication</subject><ispartof>IEEE internet of things journal, 2022-08, Vol.9 (15), p.13470-13485</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-7bc4995e3df82cd531a1df07e0993abe65423b77afbc05d2aea6d4ec19f63813</citedby><cites>FETCH-LOGICAL-c293t-7bc4995e3df82cd531a1df07e0993abe65423b77afbc05d2aea6d4ec19f63813</cites><orcidid>0000-0002-0667-1150 ; 0000-0003-2585-0290 ; 0000-0001-9272-0475</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9684492$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9684492$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Liang, Tianhao</creatorcontrib><creatorcontrib>Zhang, Tingting</creatorcontrib><creatorcontrib>Yang, Jiayan</creatorcontrib><creatorcontrib>Feng, Daquan</creatorcontrib><creatorcontrib>Zhang, Qinyu</creatorcontrib><title>UAV-Aided Positioning Systems for Ground Devices: Fundamental Limits and Algorithms</title><title>IEEE internet of things journal</title><addtitle>JIoT</addtitle><description>High-precision location information formulates the basis of the modern Internet of Things (IoT). However, since the navigation signals from the global navigation satellite systems (GNSSs) are frequently attenuated or blocked in urban areas, reliable and high accuracy positioning alternatives are thus required for ground devices (GDs). Due to the advantages of their flexible deployment and extensive coverage, unmanned aerial vehicles (UAVs) show significant potential in this ground localization enhancement system. In this article, we propose a UAV aided positioning (UAP) system for GDs, where the UAVs provide valuable flying Line of Sight (LoS) observations. Specifically, we first give the fundamental limits of the proposed UAP system in terms of the Cramer-Rao low bound (CRLB), where the UAVs are treated as "agents" with unknown positions instead of anchors. Then, we formulate a general UAP method using the nonparametric belief propagation (NBP)-based probabilistic framework, to jointly positioning UAVs and GDs simultaneously. Moreover, a two-step clustering-based solution is given to tackle the data association challenge in the multi-UAV scenarios. We also show that proper data feedback could achieve additional performance advantages without any extra measurements. The optimal multi-UAV deployment strategy is then proposed, by which the potential of the UAP system could be fully characterized. Last but not least, we verify our solutions via numerical simulations and practical experiments, which provide meaningful insights and performance evaluations to the system design and implementations.</description><subject>Algorithms</subject><subject>Autonomous aerial vehicles</subject><subject>Clustering</subject><subject>Cramer–Rao lower bound (CRLB)</subject><subject>data association</subject><subject>Global navigation satellite system</subject><subject>high precise location</subject><subject>Internet of Things</subject><subject>Internet of Things (IoT)</subject><subject>Line of sight</subject><subject>Location awareness</subject><subject>Navigation satellites</subject><subject>Performance evaluation</subject><subject>Radar tracking</subject><subject>Systems design</subject><subject>Target tracking</subject><subject>unmanned aerial vehicle (UAV)</subject><subject>Unmanned aerial vehicles</subject><subject>Urban areas</subject><subject>Wireless communication</subject><issn>2327-4662</issn><issn>2327-4662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE9rAjEQxUNpoWL9AKWXQM9r82-zprfFVmsRLGh7DdnNrI24G5usgt--K0rpaWaY9-YxP4TuKRlSStTT-2yxGjLC2JBTIRgXV6jHOMsSISW7_tffokGMG0JIZ0upkj20_My_ktxZsPjDR9c637hmjZfH2EIdceUDnga_byx-gYMrIT7jSTeZGprWbPHc1a6N2HT7fLv2wbXfdbxDN5XZRhhcah-tJq-r8VsyX0xn43yelEzxNsmKUiiVArfViJU25dRQW5EMiFLcFCDT7pUiy0xVlCS1zICRVkBJVSX5iPI-ejyf3QX_s4fY6o3fh6ZL1EyqlIqM0rRT0bOqDD7GAJXeBVebcNSU6BM9faKnT_T0hV7neTh7HAD86ZUcCaEY_wXWjGsA</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Liang, Tianhao</creator><creator>Zhang, Tingting</creator><creator>Yang, Jiayan</creator><creator>Feng, Daquan</creator><creator>Zhang, Qinyu</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-0667-1150</orcidid><orcidid>https://orcid.org/0000-0003-2585-0290</orcidid><orcidid>https://orcid.org/0000-0001-9272-0475</orcidid></search><sort><creationdate>20220801</creationdate><title>UAV-Aided Positioning Systems for Ground Devices: Fundamental Limits and Algorithms</title><author>Liang, Tianhao ; Zhang, Tingting ; Yang, Jiayan ; Feng, Daquan ; Zhang, Qinyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-7bc4995e3df82cd531a1df07e0993abe65423b77afbc05d2aea6d4ec19f63813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Autonomous aerial vehicles</topic><topic>Clustering</topic><topic>Cramer–Rao lower bound (CRLB)</topic><topic>data association</topic><topic>Global navigation satellite system</topic><topic>high precise location</topic><topic>Internet of Things</topic><topic>Internet of Things (IoT)</topic><topic>Line of sight</topic><topic>Location awareness</topic><topic>Navigation satellites</topic><topic>Performance evaluation</topic><topic>Radar tracking</topic><topic>Systems design</topic><topic>Target tracking</topic><topic>unmanned aerial vehicle (UAV)</topic><topic>Unmanned aerial vehicles</topic><topic>Urban areas</topic><topic>Wireless communication</topic><toplevel>online_resources</toplevel><creatorcontrib>Liang, Tianhao</creatorcontrib><creatorcontrib>Zhang, Tingting</creatorcontrib><creatorcontrib>Yang, Jiayan</creatorcontrib><creatorcontrib>Feng, Daquan</creatorcontrib><creatorcontrib>Zhang, Qinyu</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE internet of things journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Liang, Tianhao</au><au>Zhang, Tingting</au><au>Yang, Jiayan</au><au>Feng, Daquan</au><au>Zhang, Qinyu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>UAV-Aided Positioning Systems for Ground Devices: Fundamental Limits and Algorithms</atitle><jtitle>IEEE internet of things journal</jtitle><stitle>JIoT</stitle><date>2022-08-01</date><risdate>2022</risdate><volume>9</volume><issue>15</issue><spage>13470</spage><epage>13485</epage><pages>13470-13485</pages><issn>2327-4662</issn><eissn>2327-4662</eissn><coden>IITJAU</coden><abstract>High-precision location information formulates the basis of the modern Internet of Things (IoT). However, since the navigation signals from the global navigation satellite systems (GNSSs) are frequently attenuated or blocked in urban areas, reliable and high accuracy positioning alternatives are thus required for ground devices (GDs). Due to the advantages of their flexible deployment and extensive coverage, unmanned aerial vehicles (UAVs) show significant potential in this ground localization enhancement system. In this article, we propose a UAV aided positioning (UAP) system for GDs, where the UAVs provide valuable flying Line of Sight (LoS) observations. Specifically, we first give the fundamental limits of the proposed UAP system in terms of the Cramer-Rao low bound (CRLB), where the UAVs are treated as "agents" with unknown positions instead of anchors. Then, we formulate a general UAP method using the nonparametric belief propagation (NBP)-based probabilistic framework, to jointly positioning UAVs and GDs simultaneously. Moreover, a two-step clustering-based solution is given to tackle the data association challenge in the multi-UAV scenarios. We also show that proper data feedback could achieve additional performance advantages without any extra measurements. The optimal multi-UAV deployment strategy is then proposed, by which the potential of the UAP system could be fully characterized. Last but not least, we verify our solutions via numerical simulations and practical experiments, which provide meaningful insights and performance evaluations to the system design and implementations.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JIOT.2022.3144234</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-0667-1150</orcidid><orcidid>https://orcid.org/0000-0003-2585-0290</orcidid><orcidid>https://orcid.org/0000-0001-9272-0475</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2327-4662 |
ispartof | IEEE internet of things journal, 2022-08, Vol.9 (15), p.13470-13485 |
issn | 2327-4662 2327-4662 |
language | eng |
recordid | cdi_crossref_primary_10_1109_JIOT_2022_3144234 |
source | IEEE Xplore |
subjects | Algorithms Autonomous aerial vehicles Clustering Cramer–Rao lower bound (CRLB) data association Global navigation satellite system high precise location Internet of Things Internet of Things (IoT) Line of sight Location awareness Navigation satellites Performance evaluation Radar tracking Systems design Target tracking unmanned aerial vehicle (UAV) Unmanned aerial vehicles Urban areas Wireless communication |
title | UAV-Aided Positioning Systems for Ground Devices: Fundamental Limits and Algorithms |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T20%3A19%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=UAV-Aided%20Positioning%20Systems%20for%20Ground%20Devices:%20Fundamental%20Limits%20and%20Algorithms&rft.jtitle=IEEE%20internet%20of%20things%20journal&rft.au=Liang,%20Tianhao&rft.date=2022-08-01&rft.volume=9&rft.issue=15&rft.spage=13470&rft.epage=13485&rft.pages=13470-13485&rft.issn=2327-4662&rft.eissn=2327-4662&rft.coden=IITJAU&rft_id=info:doi/10.1109/JIOT.2022.3144234&rft_dat=%3Cproquest_RIE%3E2695147115%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2695147115&rft_id=info:pmid/&rft_ieee_id=9684492&rfr_iscdi=true |