Secure 5G Positioning With Truth Discovery, Attack Detection, and Tracing

The fifth-generation (5G) cellular network is expected to provide submeter positioning accuracy without draining the battery of user equipment (UE). As a solution, ultradense network (UDN) deployment and network-based positioning were proposed. However, the openness of UDN and the vulnerability of n...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE internet of things journal 2022-11, Vol.9 (22), p.22220-22229
Hauptverfasser: Li, Yilin, Liu, Shushu, Yan, Zheng, Deng, Robert H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 22229
container_issue 22
container_start_page 22220
container_title IEEE internet of things journal
container_volume 9
creator Li, Yilin
Liu, Shushu
Yan, Zheng
Deng, Robert H.
description The fifth-generation (5G) cellular network is expected to provide submeter positioning accuracy without draining the battery of user equipment (UE). As a solution, ultradense network (UDN) deployment and network-based positioning were proposed. However, the openness of UDN and the vulnerability of network devices [e.g., access nodes (ANs)] make it easy for attackers to poison such a positioning system. However, no existing work explores how to overcome this issue. This article concentrates on jamming and collusion attacks in the network-based positioning system. Specifically, we design a novel scheme that contains three functional modules to erase the influence of these attacks. A truth discovery module applies a clustering-based method aiming to generate the most approximate position value and find out suspicious signals. Based on neural network models, we further develop an attack detection module and an attack tracing module to perceive attacked UE and locate malicious or attacked ANs. Through simulation, we conduct extensive experiments to illustrate the effectiveness of our scheme. The result shows high detection and tracing accuracy with very simple neural network models, which also implies the potential of our proposed scheme in practical deployment.
doi_str_mv 10.1109/JIOT.2021.3088852
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JIOT_2021_3088852</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9453710</ieee_id><sourcerecordid>2731857292</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-40dbc757e2dba0f7412f181570140f4a6e239b8b98daceb27f84352e5792e2bb3</originalsourceid><addsrcrecordid>eNpNkEFLwzAUgIMoOOZ-gHgJeF1n8tI06XFsbk4GE5x4DGn6qp3azqQV9u9t2RAveTl833vwEXLN2YRzlt49rjbbCTDgE8G01hLOyAAEqChOEjj_978koxB2jLFOkzxNBmT1jK71SOWSPtWhbMq6Kqs3-lo273Tr2-6dl8HVP-gPYzptGus-6BwbdD05prbKO8y6zrkiF4X9DDg6zSF5WdxvZw_RerNczabryAmRNFHM8swpqRDyzLJCxRwKrrlUjMesiG2CINJMZ6nOrcMMVKFjIQGlSgEhy8SQ3B737n393WJozK5ufdWdNKAE11JBCh3Fj5TzdQgeC7P35Zf1B8OZ6aOZPprpo5lTtM65OTolIv7xaSyF4kz8ApFlZnE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2731857292</pqid></control><display><type>article</type><title>Secure 5G Positioning With Truth Discovery, Attack Detection, and Tracing</title><source>IEEE Electronic Library (IEL)</source><creator>Li, Yilin ; Liu, Shushu ; Yan, Zheng ; Deng, Robert H.</creator><creatorcontrib>Li, Yilin ; Liu, Shushu ; Yan, Zheng ; Deng, Robert H.</creatorcontrib><description>The fifth-generation (5G) cellular network is expected to provide submeter positioning accuracy without draining the battery of user equipment (UE). As a solution, ultradense network (UDN) deployment and network-based positioning were proposed. However, the openness of UDN and the vulnerability of network devices [e.g., access nodes (ANs)] make it easy for attackers to poison such a positioning system. However, no existing work explores how to overcome this issue. This article concentrates on jamming and collusion attacks in the network-based positioning system. Specifically, we design a novel scheme that contains three functional modules to erase the influence of these attacks. A truth discovery module applies a clustering-based method aiming to generate the most approximate position value and find out suspicious signals. Based on neural network models, we further develop an attack detection module and an attack tracing module to perceive attacked UE and locate malicious or attacked ANs. Through simulation, we conduct extensive experiments to illustrate the effectiveness of our scheme. The result shows high detection and tracing accuracy with very simple neural network models, which also implies the potential of our proposed scheme in practical deployment.</description><identifier>ISSN: 2327-4662</identifier><identifier>EISSN: 2327-4662</identifier><identifier>DOI: 10.1109/JIOT.2021.3088852</identifier><identifier>CODEN: IITJAU</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>5G mobile communication ; Accuracy ; Attack detection and tracing ; Cellular communication ; Clustering ; Drainage ; Feature extraction ; fifth-generation (5G) positioning ; Global Positioning System ; Jamming ; Location awareness ; Modules ; neural network ; Neural networks ; Peer-to-peer computing ; Tracing ; truth discovery</subject><ispartof>IEEE internet of things journal, 2022-11, Vol.9 (22), p.22220-22229</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-40dbc757e2dba0f7412f181570140f4a6e239b8b98daceb27f84352e5792e2bb3</citedby><cites>FETCH-LOGICAL-c336t-40dbc757e2dba0f7412f181570140f4a6e239b8b98daceb27f84352e5792e2bb3</cites><orcidid>0000-0002-1068-9783 ; 0000-0003-3491-8146 ; 0000-0002-9697-2108</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9453710$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,782,786,798,27931,27932,54765</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9453710$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Li, Yilin</creatorcontrib><creatorcontrib>Liu, Shushu</creatorcontrib><creatorcontrib>Yan, Zheng</creatorcontrib><creatorcontrib>Deng, Robert H.</creatorcontrib><title>Secure 5G Positioning With Truth Discovery, Attack Detection, and Tracing</title><title>IEEE internet of things journal</title><addtitle>JIoT</addtitle><description>The fifth-generation (5G) cellular network is expected to provide submeter positioning accuracy without draining the battery of user equipment (UE). As a solution, ultradense network (UDN) deployment and network-based positioning were proposed. However, the openness of UDN and the vulnerability of network devices [e.g., access nodes (ANs)] make it easy for attackers to poison such a positioning system. However, no existing work explores how to overcome this issue. This article concentrates on jamming and collusion attacks in the network-based positioning system. Specifically, we design a novel scheme that contains three functional modules to erase the influence of these attacks. A truth discovery module applies a clustering-based method aiming to generate the most approximate position value and find out suspicious signals. Based on neural network models, we further develop an attack detection module and an attack tracing module to perceive attacked UE and locate malicious or attacked ANs. Through simulation, we conduct extensive experiments to illustrate the effectiveness of our scheme. The result shows high detection and tracing accuracy with very simple neural network models, which also implies the potential of our proposed scheme in practical deployment.</description><subject>5G mobile communication</subject><subject>Accuracy</subject><subject>Attack detection and tracing</subject><subject>Cellular communication</subject><subject>Clustering</subject><subject>Drainage</subject><subject>Feature extraction</subject><subject>fifth-generation (5G) positioning</subject><subject>Global Positioning System</subject><subject>Jamming</subject><subject>Location awareness</subject><subject>Modules</subject><subject>neural network</subject><subject>Neural networks</subject><subject>Peer-to-peer computing</subject><subject>Tracing</subject><subject>truth discovery</subject><issn>2327-4662</issn><issn>2327-4662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkEFLwzAUgIMoOOZ-gHgJeF1n8tI06XFsbk4GE5x4DGn6qp3azqQV9u9t2RAveTl833vwEXLN2YRzlt49rjbbCTDgE8G01hLOyAAEqChOEjj_978koxB2jLFOkzxNBmT1jK71SOWSPtWhbMq6Kqs3-lo273Tr2-6dl8HVP-gPYzptGus-6BwbdD05prbKO8y6zrkiF4X9DDg6zSF5WdxvZw_RerNczabryAmRNFHM8swpqRDyzLJCxRwKrrlUjMesiG2CINJMZ6nOrcMMVKFjIQGlSgEhy8SQ3B737n393WJozK5ufdWdNKAE11JBCh3Fj5TzdQgeC7P35Zf1B8OZ6aOZPprpo5lTtM65OTolIv7xaSyF4kz8ApFlZnE</recordid><startdate>20221115</startdate><enddate>20221115</enddate><creator>Li, Yilin</creator><creator>Liu, Shushu</creator><creator>Yan, Zheng</creator><creator>Deng, Robert H.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-1068-9783</orcidid><orcidid>https://orcid.org/0000-0003-3491-8146</orcidid><orcidid>https://orcid.org/0000-0002-9697-2108</orcidid></search><sort><creationdate>20221115</creationdate><title>Secure 5G Positioning With Truth Discovery, Attack Detection, and Tracing</title><author>Li, Yilin ; Liu, Shushu ; Yan, Zheng ; Deng, Robert H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-40dbc757e2dba0f7412f181570140f4a6e239b8b98daceb27f84352e5792e2bb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>5G mobile communication</topic><topic>Accuracy</topic><topic>Attack detection and tracing</topic><topic>Cellular communication</topic><topic>Clustering</topic><topic>Drainage</topic><topic>Feature extraction</topic><topic>fifth-generation (5G) positioning</topic><topic>Global Positioning System</topic><topic>Jamming</topic><topic>Location awareness</topic><topic>Modules</topic><topic>neural network</topic><topic>Neural networks</topic><topic>Peer-to-peer computing</topic><topic>Tracing</topic><topic>truth discovery</topic><toplevel>online_resources</toplevel><creatorcontrib>Li, Yilin</creatorcontrib><creatorcontrib>Liu, Shushu</creatorcontrib><creatorcontrib>Yan, Zheng</creatorcontrib><creatorcontrib>Deng, Robert H.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE internet of things journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Li, Yilin</au><au>Liu, Shushu</au><au>Yan, Zheng</au><au>Deng, Robert H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Secure 5G Positioning With Truth Discovery, Attack Detection, and Tracing</atitle><jtitle>IEEE internet of things journal</jtitle><stitle>JIoT</stitle><date>2022-11-15</date><risdate>2022</risdate><volume>9</volume><issue>22</issue><spage>22220</spage><epage>22229</epage><pages>22220-22229</pages><issn>2327-4662</issn><eissn>2327-4662</eissn><coden>IITJAU</coden><abstract>The fifth-generation (5G) cellular network is expected to provide submeter positioning accuracy without draining the battery of user equipment (UE). As a solution, ultradense network (UDN) deployment and network-based positioning were proposed. However, the openness of UDN and the vulnerability of network devices [e.g., access nodes (ANs)] make it easy for attackers to poison such a positioning system. However, no existing work explores how to overcome this issue. This article concentrates on jamming and collusion attacks in the network-based positioning system. Specifically, we design a novel scheme that contains three functional modules to erase the influence of these attacks. A truth discovery module applies a clustering-based method aiming to generate the most approximate position value and find out suspicious signals. Based on neural network models, we further develop an attack detection module and an attack tracing module to perceive attacked UE and locate malicious or attacked ANs. Through simulation, we conduct extensive experiments to illustrate the effectiveness of our scheme. The result shows high detection and tracing accuracy with very simple neural network models, which also implies the potential of our proposed scheme in practical deployment.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JIOT.2021.3088852</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-1068-9783</orcidid><orcidid>https://orcid.org/0000-0003-3491-8146</orcidid><orcidid>https://orcid.org/0000-0002-9697-2108</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2327-4662
ispartof IEEE internet of things journal, 2022-11, Vol.9 (22), p.22220-22229
issn 2327-4662
2327-4662
language eng
recordid cdi_crossref_primary_10_1109_JIOT_2021_3088852
source IEEE Electronic Library (IEL)
subjects 5G mobile communication
Accuracy
Attack detection and tracing
Cellular communication
Clustering
Drainage
Feature extraction
fifth-generation (5G) positioning
Global Positioning System
Jamming
Location awareness
Modules
neural network
Neural networks
Peer-to-peer computing
Tracing
truth discovery
title Secure 5G Positioning With Truth Discovery, Attack Detection, and Tracing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T15%3A19%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Secure%205G%20Positioning%20With%20Truth%20Discovery,%20Attack%20Detection,%20and%20Tracing&rft.jtitle=IEEE%20internet%20of%20things%20journal&rft.au=Li,%20Yilin&rft.date=2022-11-15&rft.volume=9&rft.issue=22&rft.spage=22220&rft.epage=22229&rft.pages=22220-22229&rft.issn=2327-4662&rft.eissn=2327-4662&rft.coden=IITJAU&rft_id=info:doi/10.1109/JIOT.2021.3088852&rft_dat=%3Cproquest_RIE%3E2731857292%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2731857292&rft_id=info:pmid/&rft_ieee_id=9453710&rfr_iscdi=true