Secure 5G Positioning With Truth Discovery, Attack Detection, and Tracing
The fifth-generation (5G) cellular network is expected to provide submeter positioning accuracy without draining the battery of user equipment (UE). As a solution, ultradense network (UDN) deployment and network-based positioning were proposed. However, the openness of UDN and the vulnerability of n...
Gespeichert in:
Veröffentlicht in: | IEEE internet of things journal 2022-11, Vol.9 (22), p.22220-22229 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 22229 |
---|---|
container_issue | 22 |
container_start_page | 22220 |
container_title | IEEE internet of things journal |
container_volume | 9 |
creator | Li, Yilin Liu, Shushu Yan, Zheng Deng, Robert H. |
description | The fifth-generation (5G) cellular network is expected to provide submeter positioning accuracy without draining the battery of user equipment (UE). As a solution, ultradense network (UDN) deployment and network-based positioning were proposed. However, the openness of UDN and the vulnerability of network devices [e.g., access nodes (ANs)] make it easy for attackers to poison such a positioning system. However, no existing work explores how to overcome this issue. This article concentrates on jamming and collusion attacks in the network-based positioning system. Specifically, we design a novel scheme that contains three functional modules to erase the influence of these attacks. A truth discovery module applies a clustering-based method aiming to generate the most approximate position value and find out suspicious signals. Based on neural network models, we further develop an attack detection module and an attack tracing module to perceive attacked UE and locate malicious or attacked ANs. Through simulation, we conduct extensive experiments to illustrate the effectiveness of our scheme. The result shows high detection and tracing accuracy with very simple neural network models, which also implies the potential of our proposed scheme in practical deployment. |
doi_str_mv | 10.1109/JIOT.2021.3088852 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JIOT_2021_3088852</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9453710</ieee_id><sourcerecordid>2731857292</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-40dbc757e2dba0f7412f181570140f4a6e239b8b98daceb27f84352e5792e2bb3</originalsourceid><addsrcrecordid>eNpNkEFLwzAUgIMoOOZ-gHgJeF1n8tI06XFsbk4GE5x4DGn6qp3azqQV9u9t2RAveTl833vwEXLN2YRzlt49rjbbCTDgE8G01hLOyAAEqChOEjj_978koxB2jLFOkzxNBmT1jK71SOWSPtWhbMq6Kqs3-lo273Tr2-6dl8HVP-gPYzptGus-6BwbdD05prbKO8y6zrkiF4X9DDg6zSF5WdxvZw_RerNczabryAmRNFHM8swpqRDyzLJCxRwKrrlUjMesiG2CINJMZ6nOrcMMVKFjIQGlSgEhy8SQ3B737n393WJozK5ufdWdNKAE11JBCh3Fj5TzdQgeC7P35Zf1B8OZ6aOZPprpo5lTtM65OTolIv7xaSyF4kz8ApFlZnE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2731857292</pqid></control><display><type>article</type><title>Secure 5G Positioning With Truth Discovery, Attack Detection, and Tracing</title><source>IEEE Electronic Library (IEL)</source><creator>Li, Yilin ; Liu, Shushu ; Yan, Zheng ; Deng, Robert H.</creator><creatorcontrib>Li, Yilin ; Liu, Shushu ; Yan, Zheng ; Deng, Robert H.</creatorcontrib><description>The fifth-generation (5G) cellular network is expected to provide submeter positioning accuracy without draining the battery of user equipment (UE). As a solution, ultradense network (UDN) deployment and network-based positioning were proposed. However, the openness of UDN and the vulnerability of network devices [e.g., access nodes (ANs)] make it easy for attackers to poison such a positioning system. However, no existing work explores how to overcome this issue. This article concentrates on jamming and collusion attacks in the network-based positioning system. Specifically, we design a novel scheme that contains three functional modules to erase the influence of these attacks. A truth discovery module applies a clustering-based method aiming to generate the most approximate position value and find out suspicious signals. Based on neural network models, we further develop an attack detection module and an attack tracing module to perceive attacked UE and locate malicious or attacked ANs. Through simulation, we conduct extensive experiments to illustrate the effectiveness of our scheme. The result shows high detection and tracing accuracy with very simple neural network models, which also implies the potential of our proposed scheme in practical deployment.</description><identifier>ISSN: 2327-4662</identifier><identifier>EISSN: 2327-4662</identifier><identifier>DOI: 10.1109/JIOT.2021.3088852</identifier><identifier>CODEN: IITJAU</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>5G mobile communication ; Accuracy ; Attack detection and tracing ; Cellular communication ; Clustering ; Drainage ; Feature extraction ; fifth-generation (5G) positioning ; Global Positioning System ; Jamming ; Location awareness ; Modules ; neural network ; Neural networks ; Peer-to-peer computing ; Tracing ; truth discovery</subject><ispartof>IEEE internet of things journal, 2022-11, Vol.9 (22), p.22220-22229</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-40dbc757e2dba0f7412f181570140f4a6e239b8b98daceb27f84352e5792e2bb3</citedby><cites>FETCH-LOGICAL-c336t-40dbc757e2dba0f7412f181570140f4a6e239b8b98daceb27f84352e5792e2bb3</cites><orcidid>0000-0002-1068-9783 ; 0000-0003-3491-8146 ; 0000-0002-9697-2108</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9453710$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,782,786,798,27931,27932,54765</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9453710$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Li, Yilin</creatorcontrib><creatorcontrib>Liu, Shushu</creatorcontrib><creatorcontrib>Yan, Zheng</creatorcontrib><creatorcontrib>Deng, Robert H.</creatorcontrib><title>Secure 5G Positioning With Truth Discovery, Attack Detection, and Tracing</title><title>IEEE internet of things journal</title><addtitle>JIoT</addtitle><description>The fifth-generation (5G) cellular network is expected to provide submeter positioning accuracy without draining the battery of user equipment (UE). As a solution, ultradense network (UDN) deployment and network-based positioning were proposed. However, the openness of UDN and the vulnerability of network devices [e.g., access nodes (ANs)] make it easy for attackers to poison such a positioning system. However, no existing work explores how to overcome this issue. This article concentrates on jamming and collusion attacks in the network-based positioning system. Specifically, we design a novel scheme that contains three functional modules to erase the influence of these attacks. A truth discovery module applies a clustering-based method aiming to generate the most approximate position value and find out suspicious signals. Based on neural network models, we further develop an attack detection module and an attack tracing module to perceive attacked UE and locate malicious or attacked ANs. Through simulation, we conduct extensive experiments to illustrate the effectiveness of our scheme. The result shows high detection and tracing accuracy with very simple neural network models, which also implies the potential of our proposed scheme in practical deployment.</description><subject>5G mobile communication</subject><subject>Accuracy</subject><subject>Attack detection and tracing</subject><subject>Cellular communication</subject><subject>Clustering</subject><subject>Drainage</subject><subject>Feature extraction</subject><subject>fifth-generation (5G) positioning</subject><subject>Global Positioning System</subject><subject>Jamming</subject><subject>Location awareness</subject><subject>Modules</subject><subject>neural network</subject><subject>Neural networks</subject><subject>Peer-to-peer computing</subject><subject>Tracing</subject><subject>truth discovery</subject><issn>2327-4662</issn><issn>2327-4662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkEFLwzAUgIMoOOZ-gHgJeF1n8tI06XFsbk4GE5x4DGn6qp3azqQV9u9t2RAveTl833vwEXLN2YRzlt49rjbbCTDgE8G01hLOyAAEqChOEjj_978koxB2jLFOkzxNBmT1jK71SOWSPtWhbMq6Kqs3-lo273Tr2-6dl8HVP-gPYzptGus-6BwbdD05prbKO8y6zrkiF4X9DDg6zSF5WdxvZw_RerNczabryAmRNFHM8swpqRDyzLJCxRwKrrlUjMesiG2CINJMZ6nOrcMMVKFjIQGlSgEhy8SQ3B737n393WJozK5ufdWdNKAE11JBCh3Fj5TzdQgeC7P35Zf1B8OZ6aOZPprpo5lTtM65OTolIv7xaSyF4kz8ApFlZnE</recordid><startdate>20221115</startdate><enddate>20221115</enddate><creator>Li, Yilin</creator><creator>Liu, Shushu</creator><creator>Yan, Zheng</creator><creator>Deng, Robert H.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-1068-9783</orcidid><orcidid>https://orcid.org/0000-0003-3491-8146</orcidid><orcidid>https://orcid.org/0000-0002-9697-2108</orcidid></search><sort><creationdate>20221115</creationdate><title>Secure 5G Positioning With Truth Discovery, Attack Detection, and Tracing</title><author>Li, Yilin ; Liu, Shushu ; Yan, Zheng ; Deng, Robert H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-40dbc757e2dba0f7412f181570140f4a6e239b8b98daceb27f84352e5792e2bb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>5G mobile communication</topic><topic>Accuracy</topic><topic>Attack detection and tracing</topic><topic>Cellular communication</topic><topic>Clustering</topic><topic>Drainage</topic><topic>Feature extraction</topic><topic>fifth-generation (5G) positioning</topic><topic>Global Positioning System</topic><topic>Jamming</topic><topic>Location awareness</topic><topic>Modules</topic><topic>neural network</topic><topic>Neural networks</topic><topic>Peer-to-peer computing</topic><topic>Tracing</topic><topic>truth discovery</topic><toplevel>online_resources</toplevel><creatorcontrib>Li, Yilin</creatorcontrib><creatorcontrib>Liu, Shushu</creatorcontrib><creatorcontrib>Yan, Zheng</creatorcontrib><creatorcontrib>Deng, Robert H.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE internet of things journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Li, Yilin</au><au>Liu, Shushu</au><au>Yan, Zheng</au><au>Deng, Robert H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Secure 5G Positioning With Truth Discovery, Attack Detection, and Tracing</atitle><jtitle>IEEE internet of things journal</jtitle><stitle>JIoT</stitle><date>2022-11-15</date><risdate>2022</risdate><volume>9</volume><issue>22</issue><spage>22220</spage><epage>22229</epage><pages>22220-22229</pages><issn>2327-4662</issn><eissn>2327-4662</eissn><coden>IITJAU</coden><abstract>The fifth-generation (5G) cellular network is expected to provide submeter positioning accuracy without draining the battery of user equipment (UE). As a solution, ultradense network (UDN) deployment and network-based positioning were proposed. However, the openness of UDN and the vulnerability of network devices [e.g., access nodes (ANs)] make it easy for attackers to poison such a positioning system. However, no existing work explores how to overcome this issue. This article concentrates on jamming and collusion attacks in the network-based positioning system. Specifically, we design a novel scheme that contains three functional modules to erase the influence of these attacks. A truth discovery module applies a clustering-based method aiming to generate the most approximate position value and find out suspicious signals. Based on neural network models, we further develop an attack detection module and an attack tracing module to perceive attacked UE and locate malicious or attacked ANs. Through simulation, we conduct extensive experiments to illustrate the effectiveness of our scheme. The result shows high detection and tracing accuracy with very simple neural network models, which also implies the potential of our proposed scheme in practical deployment.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JIOT.2021.3088852</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-1068-9783</orcidid><orcidid>https://orcid.org/0000-0003-3491-8146</orcidid><orcidid>https://orcid.org/0000-0002-9697-2108</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2327-4662 |
ispartof | IEEE internet of things journal, 2022-11, Vol.9 (22), p.22220-22229 |
issn | 2327-4662 2327-4662 |
language | eng |
recordid | cdi_crossref_primary_10_1109_JIOT_2021_3088852 |
source | IEEE Electronic Library (IEL) |
subjects | 5G mobile communication Accuracy Attack detection and tracing Cellular communication Clustering Drainage Feature extraction fifth-generation (5G) positioning Global Positioning System Jamming Location awareness Modules neural network Neural networks Peer-to-peer computing Tracing truth discovery |
title | Secure 5G Positioning With Truth Discovery, Attack Detection, and Tracing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T15%3A19%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Secure%205G%20Positioning%20With%20Truth%20Discovery,%20Attack%20Detection,%20and%20Tracing&rft.jtitle=IEEE%20internet%20of%20things%20journal&rft.au=Li,%20Yilin&rft.date=2022-11-15&rft.volume=9&rft.issue=22&rft.spage=22220&rft.epage=22229&rft.pages=22220-22229&rft.issn=2327-4662&rft.eissn=2327-4662&rft.coden=IITJAU&rft_id=info:doi/10.1109/JIOT.2021.3088852&rft_dat=%3Cproquest_RIE%3E2731857292%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2731857292&rft_id=info:pmid/&rft_ieee_id=9453710&rfr_iscdi=true |