A Push-Based Probabilistic Method for Source Location Privacy Protection in Underwater Acoustic Sensor Networks

As the research topics in ocean emerge, underwater acoustic sensor networks (UASNs) have become ever more relevant. Consequently, challenges arise with the security and privacy of the UASNs. Compared to the active attacks, the characteristics of passive attacks are more difficult to discriminate. Th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE internet of things journal 2022-01, Vol.9 (1), p.770-782
Hauptverfasser: Wang, Hao, Han, Guangjie, Zhang, Yu, Xie, Ling
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 782
container_issue 1
container_start_page 770
container_title IEEE internet of things journal
container_volume 9
creator Wang, Hao
Han, Guangjie
Zhang, Yu
Xie, Ling
description As the research topics in ocean emerge, underwater acoustic sensor networks (UASNs) have become ever more relevant. Consequently, challenges arise with the security and privacy of the UASNs. Compared to the active attacks, the characteristics of passive attacks are more difficult to discriminate. Thus, the focus of this study is on the passive attacks in UASNs, where a push-based probabilistic method for source location privacy protection (PP-SLPP) is proposed. The fake packet technology and the multipath technology are utilized in the PP-SLPP scheme to counter the passive attacks, so as to protect the source location privacy in UASNs. Moreover, the Ekman drift current model is employed to simulate the underwater environment. And the mean shift algorithm and the k-means algorithm are adopted in the dynamic layer and static layer of the Ekman drift current model, respectively, to increase the stability of the clusters. Finally, an autonomous underwater vehicle (AUV) swarm is implemented to collect data in clusters. Through the comparison with existing data collection schemes in UASNs, the simulation results have demonstrated that the PP-SLPP scheme can achieve a longer safety period, with a minor compromise of energy consumption and delay.
doi_str_mv 10.1109/JIOT.2021.3085586
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JIOT_2021_3085586</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9446512</ieee_id><sourcerecordid>2612466967</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-47c4163d299ae1a20cf0b0036309900707c44651a660f9ca404818d141494c7d3</originalsourceid><addsrcrecordid>eNpNkFtPAjEQhRujiQT5AcaXJj4vTi_bpY9IvGBQSIDnpnS7YRG32O5K-Pd2gRifZjI950znQ-iWQJ8QkA9v4-miT4GSPoNBmg7EBepQRrOEC0Ev__XXqBfCBgCiLSVSdJAb4lkT1smjDjbHM-9WelVuy1CXBr_beu1yXDiP567xxuKJM7ouXRWF5Y82h9ZQW3MclRVeVrn1e11bj4fGNceQua1CDPiw9d75z3CDrgq9DbZ3rl20fH5ajF6TyfRlPBpOEsOYqBOeGU4Ey6mU2hJNwRSwAmCCgZQAGcR3LlKihYBCGs2BD8ggJ5xwyU2Wsy66P-XuvPtubKjVJp5QxZWKCkIjDCmyqCInlfEuBG8LtfPll_YHRUC1aFWLVrVo1Rlt9NydPKW19k8vj9-h7BfXp3P3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2612466967</pqid></control><display><type>article</type><title>A Push-Based Probabilistic Method for Source Location Privacy Protection in Underwater Acoustic Sensor Networks</title><source>IEEE Electronic Library (IEL)</source><creator>Wang, Hao ; Han, Guangjie ; Zhang, Yu ; Xie, Ling</creator><creatorcontrib>Wang, Hao ; Han, Guangjie ; Zhang, Yu ; Xie, Ling</creatorcontrib><description>As the research topics in ocean emerge, underwater acoustic sensor networks (UASNs) have become ever more relevant. Consequently, challenges arise with the security and privacy of the UASNs. Compared to the active attacks, the characteristics of passive attacks are more difficult to discriminate. Thus, the focus of this study is on the passive attacks in UASNs, where a push-based probabilistic method for source location privacy protection (PP-SLPP) is proposed. The fake packet technology and the multipath technology are utilized in the PP-SLPP scheme to counter the passive attacks, so as to protect the source location privacy in UASNs. Moreover, the Ekman drift current model is employed to simulate the underwater environment. And the mean shift algorithm and the k-means algorithm are adopted in the dynamic layer and static layer of the Ekman drift current model, respectively, to increase the stability of the clusters. Finally, an autonomous underwater vehicle (AUV) swarm is implemented to collect data in clusters. Through the comparison with existing data collection schemes in UASNs, the simulation results have demonstrated that the PP-SLPP scheme can achieve a longer safety period, with a minor compromise of energy consumption and delay.</description><identifier>ISSN: 2327-4662</identifier><identifier>EISSN: 2327-4662</identifier><identifier>DOI: 10.1109/JIOT.2021.3085586</identifier><identifier>CODEN: IITJAU</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Autonomous underwater vehicle (AUV) swarm ; Autonomous underwater vehicles ; Clusters ; Data collection ; Data privacy ; Delays ; Drift ; Energy consumption ; location push ; Position measurement ; Privacy ; Probabilistic methods ; probabilistic model ; Routing ; source location privacy (SLP) ; underwater acoustic sensor networks (UASNs) ; Underwater acoustics ; Wireless sensor networks</subject><ispartof>IEEE internet of things journal, 2022-01, Vol.9 (1), p.770-782</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-47c4163d299ae1a20cf0b0036309900707c44651a660f9ca404818d141494c7d3</citedby><cites>FETCH-LOGICAL-c336t-47c4163d299ae1a20cf0b0036309900707c44651a660f9ca404818d141494c7d3</cites><orcidid>0000-0002-2842-6340 ; 0000-0002-6921-7369 ; 0000-0001-6996-2134</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9446512$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9446512$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wang, Hao</creatorcontrib><creatorcontrib>Han, Guangjie</creatorcontrib><creatorcontrib>Zhang, Yu</creatorcontrib><creatorcontrib>Xie, Ling</creatorcontrib><title>A Push-Based Probabilistic Method for Source Location Privacy Protection in Underwater Acoustic Sensor Networks</title><title>IEEE internet of things journal</title><addtitle>JIoT</addtitle><description>As the research topics in ocean emerge, underwater acoustic sensor networks (UASNs) have become ever more relevant. Consequently, challenges arise with the security and privacy of the UASNs. Compared to the active attacks, the characteristics of passive attacks are more difficult to discriminate. Thus, the focus of this study is on the passive attacks in UASNs, where a push-based probabilistic method for source location privacy protection (PP-SLPP) is proposed. The fake packet technology and the multipath technology are utilized in the PP-SLPP scheme to counter the passive attacks, so as to protect the source location privacy in UASNs. Moreover, the Ekman drift current model is employed to simulate the underwater environment. And the mean shift algorithm and the k-means algorithm are adopted in the dynamic layer and static layer of the Ekman drift current model, respectively, to increase the stability of the clusters. Finally, an autonomous underwater vehicle (AUV) swarm is implemented to collect data in clusters. Through the comparison with existing data collection schemes in UASNs, the simulation results have demonstrated that the PP-SLPP scheme can achieve a longer safety period, with a minor compromise of energy consumption and delay.</description><subject>Algorithms</subject><subject>Autonomous underwater vehicle (AUV) swarm</subject><subject>Autonomous underwater vehicles</subject><subject>Clusters</subject><subject>Data collection</subject><subject>Data privacy</subject><subject>Delays</subject><subject>Drift</subject><subject>Energy consumption</subject><subject>location push</subject><subject>Position measurement</subject><subject>Privacy</subject><subject>Probabilistic methods</subject><subject>probabilistic model</subject><subject>Routing</subject><subject>source location privacy (SLP)</subject><subject>underwater acoustic sensor networks (UASNs)</subject><subject>Underwater acoustics</subject><subject>Wireless sensor networks</subject><issn>2327-4662</issn><issn>2327-4662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkFtPAjEQhRujiQT5AcaXJj4vTi_bpY9IvGBQSIDnpnS7YRG32O5K-Pd2gRifZjI950znQ-iWQJ8QkA9v4-miT4GSPoNBmg7EBepQRrOEC0Ev__XXqBfCBgCiLSVSdJAb4lkT1smjDjbHM-9WelVuy1CXBr_beu1yXDiP567xxuKJM7ouXRWF5Y82h9ZQW3MclRVeVrn1e11bj4fGNceQua1CDPiw9d75z3CDrgq9DbZ3rl20fH5ajF6TyfRlPBpOEsOYqBOeGU4Ey6mU2hJNwRSwAmCCgZQAGcR3LlKihYBCGs2BD8ggJ5xwyU2Wsy66P-XuvPtubKjVJp5QxZWKCkIjDCmyqCInlfEuBG8LtfPll_YHRUC1aFWLVrVo1Rlt9NydPKW19k8vj9-h7BfXp3P3</recordid><startdate>20220101</startdate><enddate>20220101</enddate><creator>Wang, Hao</creator><creator>Han, Guangjie</creator><creator>Zhang, Yu</creator><creator>Xie, Ling</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-2842-6340</orcidid><orcidid>https://orcid.org/0000-0002-6921-7369</orcidid><orcidid>https://orcid.org/0000-0001-6996-2134</orcidid></search><sort><creationdate>20220101</creationdate><title>A Push-Based Probabilistic Method for Source Location Privacy Protection in Underwater Acoustic Sensor Networks</title><author>Wang, Hao ; Han, Guangjie ; Zhang, Yu ; Xie, Ling</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-47c4163d299ae1a20cf0b0036309900707c44651a660f9ca404818d141494c7d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Autonomous underwater vehicle (AUV) swarm</topic><topic>Autonomous underwater vehicles</topic><topic>Clusters</topic><topic>Data collection</topic><topic>Data privacy</topic><topic>Delays</topic><topic>Drift</topic><topic>Energy consumption</topic><topic>location push</topic><topic>Position measurement</topic><topic>Privacy</topic><topic>Probabilistic methods</topic><topic>probabilistic model</topic><topic>Routing</topic><topic>source location privacy (SLP)</topic><topic>underwater acoustic sensor networks (UASNs)</topic><topic>Underwater acoustics</topic><topic>Wireless sensor networks</topic><toplevel>online_resources</toplevel><creatorcontrib>Wang, Hao</creatorcontrib><creatorcontrib>Han, Guangjie</creatorcontrib><creatorcontrib>Zhang, Yu</creatorcontrib><creatorcontrib>Xie, Ling</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE internet of things journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wang, Hao</au><au>Han, Guangjie</au><au>Zhang, Yu</au><au>Xie, Ling</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Push-Based Probabilistic Method for Source Location Privacy Protection in Underwater Acoustic Sensor Networks</atitle><jtitle>IEEE internet of things journal</jtitle><stitle>JIoT</stitle><date>2022-01-01</date><risdate>2022</risdate><volume>9</volume><issue>1</issue><spage>770</spage><epage>782</epage><pages>770-782</pages><issn>2327-4662</issn><eissn>2327-4662</eissn><coden>IITJAU</coden><abstract>As the research topics in ocean emerge, underwater acoustic sensor networks (UASNs) have become ever more relevant. Consequently, challenges arise with the security and privacy of the UASNs. Compared to the active attacks, the characteristics of passive attacks are more difficult to discriminate. Thus, the focus of this study is on the passive attacks in UASNs, where a push-based probabilistic method for source location privacy protection (PP-SLPP) is proposed. The fake packet technology and the multipath technology are utilized in the PP-SLPP scheme to counter the passive attacks, so as to protect the source location privacy in UASNs. Moreover, the Ekman drift current model is employed to simulate the underwater environment. And the mean shift algorithm and the k-means algorithm are adopted in the dynamic layer and static layer of the Ekman drift current model, respectively, to increase the stability of the clusters. Finally, an autonomous underwater vehicle (AUV) swarm is implemented to collect data in clusters. Through the comparison with existing data collection schemes in UASNs, the simulation results have demonstrated that the PP-SLPP scheme can achieve a longer safety period, with a minor compromise of energy consumption and delay.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JIOT.2021.3085586</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-2842-6340</orcidid><orcidid>https://orcid.org/0000-0002-6921-7369</orcidid><orcidid>https://orcid.org/0000-0001-6996-2134</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2327-4662
ispartof IEEE internet of things journal, 2022-01, Vol.9 (1), p.770-782
issn 2327-4662
2327-4662
language eng
recordid cdi_crossref_primary_10_1109_JIOT_2021_3085586
source IEEE Electronic Library (IEL)
subjects Algorithms
Autonomous underwater vehicle (AUV) swarm
Autonomous underwater vehicles
Clusters
Data collection
Data privacy
Delays
Drift
Energy consumption
location push
Position measurement
Privacy
Probabilistic methods
probabilistic model
Routing
source location privacy (SLP)
underwater acoustic sensor networks (UASNs)
Underwater acoustics
Wireless sensor networks
title A Push-Based Probabilistic Method for Source Location Privacy Protection in Underwater Acoustic Sensor Networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T13%3A37%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Push-Based%20Probabilistic%20Method%20for%20Source%20Location%20Privacy%20Protection%20in%20Underwater%20Acoustic%20Sensor%20Networks&rft.jtitle=IEEE%20internet%20of%20things%20journal&rft.au=Wang,%20Hao&rft.date=2022-01-01&rft.volume=9&rft.issue=1&rft.spage=770&rft.epage=782&rft.pages=770-782&rft.issn=2327-4662&rft.eissn=2327-4662&rft.coden=IITJAU&rft_id=info:doi/10.1109/JIOT.2021.3085586&rft_dat=%3Cproquest_RIE%3E2612466967%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2612466967&rft_id=info:pmid/&rft_ieee_id=9446512&rfr_iscdi=true