A Push-Based Probabilistic Method for Source Location Privacy Protection in Underwater Acoustic Sensor Networks
As the research topics in ocean emerge, underwater acoustic sensor networks (UASNs) have become ever more relevant. Consequently, challenges arise with the security and privacy of the UASNs. Compared to the active attacks, the characteristics of passive attacks are more difficult to discriminate. Th...
Gespeichert in:
Veröffentlicht in: | IEEE internet of things journal 2022-01, Vol.9 (1), p.770-782 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 782 |
---|---|
container_issue | 1 |
container_start_page | 770 |
container_title | IEEE internet of things journal |
container_volume | 9 |
creator | Wang, Hao Han, Guangjie Zhang, Yu Xie, Ling |
description | As the research topics in ocean emerge, underwater acoustic sensor networks (UASNs) have become ever more relevant. Consequently, challenges arise with the security and privacy of the UASNs. Compared to the active attacks, the characteristics of passive attacks are more difficult to discriminate. Thus, the focus of this study is on the passive attacks in UASNs, where a push-based probabilistic method for source location privacy protection (PP-SLPP) is proposed. The fake packet technology and the multipath technology are utilized in the PP-SLPP scheme to counter the passive attacks, so as to protect the source location privacy in UASNs. Moreover, the Ekman drift current model is employed to simulate the underwater environment. And the mean shift algorithm and the k-means algorithm are adopted in the dynamic layer and static layer of the Ekman drift current model, respectively, to increase the stability of the clusters. Finally, an autonomous underwater vehicle (AUV) swarm is implemented to collect data in clusters. Through the comparison with existing data collection schemes in UASNs, the simulation results have demonstrated that the PP-SLPP scheme can achieve a longer safety period, with a minor compromise of energy consumption and delay. |
doi_str_mv | 10.1109/JIOT.2021.3085586 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JIOT_2021_3085586</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9446512</ieee_id><sourcerecordid>2612466967</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-47c4163d299ae1a20cf0b0036309900707c44651a660f9ca404818d141494c7d3</originalsourceid><addsrcrecordid>eNpNkFtPAjEQhRujiQT5AcaXJj4vTi_bpY9IvGBQSIDnpnS7YRG32O5K-Pd2gRifZjI950znQ-iWQJ8QkA9v4-miT4GSPoNBmg7EBepQRrOEC0Ev__XXqBfCBgCiLSVSdJAb4lkT1smjDjbHM-9WelVuy1CXBr_beu1yXDiP567xxuKJM7ouXRWF5Y82h9ZQW3MclRVeVrn1e11bj4fGNceQua1CDPiw9d75z3CDrgq9DbZ3rl20fH5ajF6TyfRlPBpOEsOYqBOeGU4Ey6mU2hJNwRSwAmCCgZQAGcR3LlKihYBCGs2BD8ggJ5xwyU2Wsy66P-XuvPtubKjVJp5QxZWKCkIjDCmyqCInlfEuBG8LtfPll_YHRUC1aFWLVrVo1Rlt9NydPKW19k8vj9-h7BfXp3P3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2612466967</pqid></control><display><type>article</type><title>A Push-Based Probabilistic Method for Source Location Privacy Protection in Underwater Acoustic Sensor Networks</title><source>IEEE Electronic Library (IEL)</source><creator>Wang, Hao ; Han, Guangjie ; Zhang, Yu ; Xie, Ling</creator><creatorcontrib>Wang, Hao ; Han, Guangjie ; Zhang, Yu ; Xie, Ling</creatorcontrib><description>As the research topics in ocean emerge, underwater acoustic sensor networks (UASNs) have become ever more relevant. Consequently, challenges arise with the security and privacy of the UASNs. Compared to the active attacks, the characteristics of passive attacks are more difficult to discriminate. Thus, the focus of this study is on the passive attacks in UASNs, where a push-based probabilistic method for source location privacy protection (PP-SLPP) is proposed. The fake packet technology and the multipath technology are utilized in the PP-SLPP scheme to counter the passive attacks, so as to protect the source location privacy in UASNs. Moreover, the Ekman drift current model is employed to simulate the underwater environment. And the mean shift algorithm and the k-means algorithm are adopted in the dynamic layer and static layer of the Ekman drift current model, respectively, to increase the stability of the clusters. Finally, an autonomous underwater vehicle (AUV) swarm is implemented to collect data in clusters. Through the comparison with existing data collection schemes in UASNs, the simulation results have demonstrated that the PP-SLPP scheme can achieve a longer safety period, with a minor compromise of energy consumption and delay.</description><identifier>ISSN: 2327-4662</identifier><identifier>EISSN: 2327-4662</identifier><identifier>DOI: 10.1109/JIOT.2021.3085586</identifier><identifier>CODEN: IITJAU</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Autonomous underwater vehicle (AUV) swarm ; Autonomous underwater vehicles ; Clusters ; Data collection ; Data privacy ; Delays ; Drift ; Energy consumption ; location push ; Position measurement ; Privacy ; Probabilistic methods ; probabilistic model ; Routing ; source location privacy (SLP) ; underwater acoustic sensor networks (UASNs) ; Underwater acoustics ; Wireless sensor networks</subject><ispartof>IEEE internet of things journal, 2022-01, Vol.9 (1), p.770-782</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-47c4163d299ae1a20cf0b0036309900707c44651a660f9ca404818d141494c7d3</citedby><cites>FETCH-LOGICAL-c336t-47c4163d299ae1a20cf0b0036309900707c44651a660f9ca404818d141494c7d3</cites><orcidid>0000-0002-2842-6340 ; 0000-0002-6921-7369 ; 0000-0001-6996-2134</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9446512$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9446512$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wang, Hao</creatorcontrib><creatorcontrib>Han, Guangjie</creatorcontrib><creatorcontrib>Zhang, Yu</creatorcontrib><creatorcontrib>Xie, Ling</creatorcontrib><title>A Push-Based Probabilistic Method for Source Location Privacy Protection in Underwater Acoustic Sensor Networks</title><title>IEEE internet of things journal</title><addtitle>JIoT</addtitle><description>As the research topics in ocean emerge, underwater acoustic sensor networks (UASNs) have become ever more relevant. Consequently, challenges arise with the security and privacy of the UASNs. Compared to the active attacks, the characteristics of passive attacks are more difficult to discriminate. Thus, the focus of this study is on the passive attacks in UASNs, where a push-based probabilistic method for source location privacy protection (PP-SLPP) is proposed. The fake packet technology and the multipath technology are utilized in the PP-SLPP scheme to counter the passive attacks, so as to protect the source location privacy in UASNs. Moreover, the Ekman drift current model is employed to simulate the underwater environment. And the mean shift algorithm and the k-means algorithm are adopted in the dynamic layer and static layer of the Ekman drift current model, respectively, to increase the stability of the clusters. Finally, an autonomous underwater vehicle (AUV) swarm is implemented to collect data in clusters. Through the comparison with existing data collection schemes in UASNs, the simulation results have demonstrated that the PP-SLPP scheme can achieve a longer safety period, with a minor compromise of energy consumption and delay.</description><subject>Algorithms</subject><subject>Autonomous underwater vehicle (AUV) swarm</subject><subject>Autonomous underwater vehicles</subject><subject>Clusters</subject><subject>Data collection</subject><subject>Data privacy</subject><subject>Delays</subject><subject>Drift</subject><subject>Energy consumption</subject><subject>location push</subject><subject>Position measurement</subject><subject>Privacy</subject><subject>Probabilistic methods</subject><subject>probabilistic model</subject><subject>Routing</subject><subject>source location privacy (SLP)</subject><subject>underwater acoustic sensor networks (UASNs)</subject><subject>Underwater acoustics</subject><subject>Wireless sensor networks</subject><issn>2327-4662</issn><issn>2327-4662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkFtPAjEQhRujiQT5AcaXJj4vTi_bpY9IvGBQSIDnpnS7YRG32O5K-Pd2gRifZjI950znQ-iWQJ8QkA9v4-miT4GSPoNBmg7EBepQRrOEC0Ev__XXqBfCBgCiLSVSdJAb4lkT1smjDjbHM-9WelVuy1CXBr_beu1yXDiP567xxuKJM7ouXRWF5Y82h9ZQW3MclRVeVrn1e11bj4fGNceQua1CDPiw9d75z3CDrgq9DbZ3rl20fH5ajF6TyfRlPBpOEsOYqBOeGU4Ey6mU2hJNwRSwAmCCgZQAGcR3LlKihYBCGs2BD8ggJ5xwyU2Wsy66P-XuvPtubKjVJp5QxZWKCkIjDCmyqCInlfEuBG8LtfPll_YHRUC1aFWLVrVo1Rlt9NydPKW19k8vj9-h7BfXp3P3</recordid><startdate>20220101</startdate><enddate>20220101</enddate><creator>Wang, Hao</creator><creator>Han, Guangjie</creator><creator>Zhang, Yu</creator><creator>Xie, Ling</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-2842-6340</orcidid><orcidid>https://orcid.org/0000-0002-6921-7369</orcidid><orcidid>https://orcid.org/0000-0001-6996-2134</orcidid></search><sort><creationdate>20220101</creationdate><title>A Push-Based Probabilistic Method for Source Location Privacy Protection in Underwater Acoustic Sensor Networks</title><author>Wang, Hao ; Han, Guangjie ; Zhang, Yu ; Xie, Ling</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-47c4163d299ae1a20cf0b0036309900707c44651a660f9ca404818d141494c7d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Autonomous underwater vehicle (AUV) swarm</topic><topic>Autonomous underwater vehicles</topic><topic>Clusters</topic><topic>Data collection</topic><topic>Data privacy</topic><topic>Delays</topic><topic>Drift</topic><topic>Energy consumption</topic><topic>location push</topic><topic>Position measurement</topic><topic>Privacy</topic><topic>Probabilistic methods</topic><topic>probabilistic model</topic><topic>Routing</topic><topic>source location privacy (SLP)</topic><topic>underwater acoustic sensor networks (UASNs)</topic><topic>Underwater acoustics</topic><topic>Wireless sensor networks</topic><toplevel>online_resources</toplevel><creatorcontrib>Wang, Hao</creatorcontrib><creatorcontrib>Han, Guangjie</creatorcontrib><creatorcontrib>Zhang, Yu</creatorcontrib><creatorcontrib>Xie, Ling</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE internet of things journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wang, Hao</au><au>Han, Guangjie</au><au>Zhang, Yu</au><au>Xie, Ling</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Push-Based Probabilistic Method for Source Location Privacy Protection in Underwater Acoustic Sensor Networks</atitle><jtitle>IEEE internet of things journal</jtitle><stitle>JIoT</stitle><date>2022-01-01</date><risdate>2022</risdate><volume>9</volume><issue>1</issue><spage>770</spage><epage>782</epage><pages>770-782</pages><issn>2327-4662</issn><eissn>2327-4662</eissn><coden>IITJAU</coden><abstract>As the research topics in ocean emerge, underwater acoustic sensor networks (UASNs) have become ever more relevant. Consequently, challenges arise with the security and privacy of the UASNs. Compared to the active attacks, the characteristics of passive attacks are more difficult to discriminate. Thus, the focus of this study is on the passive attacks in UASNs, where a push-based probabilistic method for source location privacy protection (PP-SLPP) is proposed. The fake packet technology and the multipath technology are utilized in the PP-SLPP scheme to counter the passive attacks, so as to protect the source location privacy in UASNs. Moreover, the Ekman drift current model is employed to simulate the underwater environment. And the mean shift algorithm and the k-means algorithm are adopted in the dynamic layer and static layer of the Ekman drift current model, respectively, to increase the stability of the clusters. Finally, an autonomous underwater vehicle (AUV) swarm is implemented to collect data in clusters. Through the comparison with existing data collection schemes in UASNs, the simulation results have demonstrated that the PP-SLPP scheme can achieve a longer safety period, with a minor compromise of energy consumption and delay.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JIOT.2021.3085586</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-2842-6340</orcidid><orcidid>https://orcid.org/0000-0002-6921-7369</orcidid><orcidid>https://orcid.org/0000-0001-6996-2134</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2327-4662 |
ispartof | IEEE internet of things journal, 2022-01, Vol.9 (1), p.770-782 |
issn | 2327-4662 2327-4662 |
language | eng |
recordid | cdi_crossref_primary_10_1109_JIOT_2021_3085586 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Autonomous underwater vehicle (AUV) swarm Autonomous underwater vehicles Clusters Data collection Data privacy Delays Drift Energy consumption location push Position measurement Privacy Probabilistic methods probabilistic model Routing source location privacy (SLP) underwater acoustic sensor networks (UASNs) Underwater acoustics Wireless sensor networks |
title | A Push-Based Probabilistic Method for Source Location Privacy Protection in Underwater Acoustic Sensor Networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T13%3A37%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Push-Based%20Probabilistic%20Method%20for%20Source%20Location%20Privacy%20Protection%20in%20Underwater%20Acoustic%20Sensor%20Networks&rft.jtitle=IEEE%20internet%20of%20things%20journal&rft.au=Wang,%20Hao&rft.date=2022-01-01&rft.volume=9&rft.issue=1&rft.spage=770&rft.epage=782&rft.pages=770-782&rft.issn=2327-4662&rft.eissn=2327-4662&rft.coden=IITJAU&rft_id=info:doi/10.1109/JIOT.2021.3085586&rft_dat=%3Cproquest_RIE%3E2612466967%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2612466967&rft_id=info:pmid/&rft_ieee_id=9446512&rfr_iscdi=true |