Ensemble Meteorological Cloud Classification Meets Internet of Dependable and Controllable Things
Advances in Internet of Things (IoT) and cloud/edge computing systems could precisely monitor the meteorological elements and environmental conditions. Remote automated observation system (RAOS) makes the full use of IoT to communicate with other sensors, enabling the active responses from passive d...
Gespeichert in:
Veröffentlicht in: | IEEE internet of things journal 2021-03, Vol.8 (5), p.3323-3330 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3330 |
---|---|
container_issue | 5 |
container_start_page | 3323 |
container_title | IEEE internet of things journal |
container_volume | 8 |
creator | Zhang, Jinglin Liu, Pu Zhang, Feng Iwabuchi, Hironobu de Moura, Antonio Artur de H. e Ayres de Albuquerque, Victor Hugo C. |
description | Advances in Internet of Things (IoT) and cloud/edge computing systems could precisely monitor the meteorological elements and environmental conditions. Remote automated observation system (RAOS) makes the full use of IoT to communicate with other sensors, enabling the active responses from passive devices for smart weather. Cloud observation and classification have been regarded as a successful application that could automatically perform emergency tasks in RAOS. However, with the increasing growth of resource exploitation, the performance of communications among the automatic observation platforms, and the efficiency of task allocation among them has become a critical challenge. In this article, an ensemble learning method and resource allocation scheme are proposed to realize the cloud observation and classification with the help of reliable and controllable infrastructures. On the one hand, several ensemble methods, like Bagging, AdaBoost, and Snapshot are selected as a base classifier to capture the cross-semantic and structure features of cloud, while applying them to the ensemble using convolutional neural networks with different base learners and residual neural networks with different depths. on the other hand, a particular cloud-edge distributed framework is proposed for cloud classification approach based on the intelligent network, to overcome the difficulty in the massive data transmission. The experimental results verify that the proposed ensemble approach achieves high accuracy of cloud classification, and effectively improves the number of allocated tasks. Ensemble methods can generate a more accurate prediction than any single classifier or the majority algorithms. It consistently yields lower error rates than single state-of-the-art models at no additional training cost. |
doi_str_mv | 10.1109/JIOT.2020.3043289 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JIOT_2020_3043289</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9286534</ieee_id><sourcerecordid>2492856531</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-d19188c70b9f661caf3c4e132e5f170058266ef5ae006561247c90c5a4e47cfc3</originalsourceid><addsrcrecordid>eNpNkM1KAzEURoMoWGofQNwMuJ6an0lmspRatVLppq5Dmt7UKdOkJpmFb2_GFnGTXC7nOxc-hG4JnhKC5cPbYrWeUkzxlOGK0UZeoBFltC4rIejlv_kaTWLcY4xzjBMpRkjPXYTDpoPiHRL44Du_a43uilnn-21-dYytzZvUepcZSLFYuATBQSq8LZ7gCG6rB4F2mfcuZUf3u1h_tm4Xb9CV1V2Eyfkfo4_n-Xr2Wi5XL4vZ47I0VLJUbokkTWNqvJFWCGK0ZaYCwihwS2qMeUOFAMs1YCy4ILSqjcSG6wryZA0bo_uT9xj8Vw8xqb3vg8snFa0kbbjgjGSKnCgTfIwBrDqG9qDDtyJYDWWqoUw1lKnOZebM3SnTAsAfn5XZWLEfh-xwJA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2492856531</pqid></control><display><type>article</type><title>Ensemble Meteorological Cloud Classification Meets Internet of Dependable and Controllable Things</title><source>IEEE Electronic Library (IEL)</source><creator>Zhang, Jinglin ; Liu, Pu ; Zhang, Feng ; Iwabuchi, Hironobu ; de Moura, Antonio Artur de H. e Ayres ; de Albuquerque, Victor Hugo C.</creator><creatorcontrib>Zhang, Jinglin ; Liu, Pu ; Zhang, Feng ; Iwabuchi, Hironobu ; de Moura, Antonio Artur de H. e Ayres ; de Albuquerque, Victor Hugo C.</creatorcontrib><description>Advances in Internet of Things (IoT) and cloud/edge computing systems could precisely monitor the meteorological elements and environmental conditions. Remote automated observation system (RAOS) makes the full use of IoT to communicate with other sensors, enabling the active responses from passive devices for smart weather. Cloud observation and classification have been regarded as a successful application that could automatically perform emergency tasks in RAOS. However, with the increasing growth of resource exploitation, the performance of communications among the automatic observation platforms, and the efficiency of task allocation among them has become a critical challenge. In this article, an ensemble learning method and resource allocation scheme are proposed to realize the cloud observation and classification with the help of reliable and controllable infrastructures. On the one hand, several ensemble methods, like Bagging, AdaBoost, and Snapshot are selected as a base classifier to capture the cross-semantic and structure features of cloud, while applying them to the ensemble using convolutional neural networks with different base learners and residual neural networks with different depths. on the other hand, a particular cloud-edge distributed framework is proposed for cloud classification approach based on the intelligent network, to overcome the difficulty in the massive data transmission. The experimental results verify that the proposed ensemble approach achieves high accuracy of cloud classification, and effectively improves the number of allocated tasks. Ensemble methods can generate a more accurate prediction than any single classifier or the majority algorithms. It consistently yields lower error rates than single state-of-the-art models at no additional training cost.</description><identifier>ISSN: 2327-4662</identifier><identifier>EISSN: 2327-4662</identifier><identifier>DOI: 10.1109/JIOT.2020.3043289</identifier><identifier>CODEN: IITJAU</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Artificial neural networks ; Cirrus cumulus stratus nimbus data set ; Classification ; Classifiers ; Cloud computing ; Computer architecture ; convolutional neural networks ; Data transmission ; dependable and controllable things ; Edge computing ; ensemble learning (EL) ; Intelligent networks ; Internet of Things ; Machine learning ; meteorological cloud classification ; Neural networks ; Remote monitoring ; Remote observing ; Resource allocation ; Stacking ; Task analysis ; Temperature sensors ; Training ; Weather</subject><ispartof>IEEE internet of things journal, 2021-03, Vol.8 (5), p.3323-3330</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-d19188c70b9f661caf3c4e132e5f170058266ef5ae006561247c90c5a4e47cfc3</citedby><cites>FETCH-LOGICAL-c293t-d19188c70b9f661caf3c4e132e5f170058266ef5ae006561247c90c5a4e47cfc3</cites><orcidid>0000-0001-6656-7286 ; 0000-0002-9311-8598 ; 0000-0003-3886-4309 ; 0000-0001-7499-1992</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9286534$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,778,782,794,27907,27908,54741</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9286534$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhang, Jinglin</creatorcontrib><creatorcontrib>Liu, Pu</creatorcontrib><creatorcontrib>Zhang, Feng</creatorcontrib><creatorcontrib>Iwabuchi, Hironobu</creatorcontrib><creatorcontrib>de Moura, Antonio Artur de H. e Ayres</creatorcontrib><creatorcontrib>de Albuquerque, Victor Hugo C.</creatorcontrib><title>Ensemble Meteorological Cloud Classification Meets Internet of Dependable and Controllable Things</title><title>IEEE internet of things journal</title><addtitle>JIoT</addtitle><description>Advances in Internet of Things (IoT) and cloud/edge computing systems could precisely monitor the meteorological elements and environmental conditions. Remote automated observation system (RAOS) makes the full use of IoT to communicate with other sensors, enabling the active responses from passive devices for smart weather. Cloud observation and classification have been regarded as a successful application that could automatically perform emergency tasks in RAOS. However, with the increasing growth of resource exploitation, the performance of communications among the automatic observation platforms, and the efficiency of task allocation among them has become a critical challenge. In this article, an ensemble learning method and resource allocation scheme are proposed to realize the cloud observation and classification with the help of reliable and controllable infrastructures. On the one hand, several ensemble methods, like Bagging, AdaBoost, and Snapshot are selected as a base classifier to capture the cross-semantic and structure features of cloud, while applying them to the ensemble using convolutional neural networks with different base learners and residual neural networks with different depths. on the other hand, a particular cloud-edge distributed framework is proposed for cloud classification approach based on the intelligent network, to overcome the difficulty in the massive data transmission. The experimental results verify that the proposed ensemble approach achieves high accuracy of cloud classification, and effectively improves the number of allocated tasks. Ensemble methods can generate a more accurate prediction than any single classifier or the majority algorithms. It consistently yields lower error rates than single state-of-the-art models at no additional training cost.</description><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Cirrus cumulus stratus nimbus data set</subject><subject>Classification</subject><subject>Classifiers</subject><subject>Cloud computing</subject><subject>Computer architecture</subject><subject>convolutional neural networks</subject><subject>Data transmission</subject><subject>dependable and controllable things</subject><subject>Edge computing</subject><subject>ensemble learning (EL)</subject><subject>Intelligent networks</subject><subject>Internet of Things</subject><subject>Machine learning</subject><subject>meteorological cloud classification</subject><subject>Neural networks</subject><subject>Remote monitoring</subject><subject>Remote observing</subject><subject>Resource allocation</subject><subject>Stacking</subject><subject>Task analysis</subject><subject>Temperature sensors</subject><subject>Training</subject><subject>Weather</subject><issn>2327-4662</issn><issn>2327-4662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkM1KAzEURoMoWGofQNwMuJ6an0lmspRatVLppq5Dmt7UKdOkJpmFb2_GFnGTXC7nOxc-hG4JnhKC5cPbYrWeUkzxlOGK0UZeoBFltC4rIejlv_kaTWLcY4xzjBMpRkjPXYTDpoPiHRL44Du_a43uilnn-21-dYytzZvUepcZSLFYuATBQSq8LZ7gCG6rB4F2mfcuZUf3u1h_tm4Xb9CV1V2Eyfkfo4_n-Xr2Wi5XL4vZ47I0VLJUbokkTWNqvJFWCGK0ZaYCwihwS2qMeUOFAMs1YCy4ILSqjcSG6wryZA0bo_uT9xj8Vw8xqb3vg8snFa0kbbjgjGSKnCgTfIwBrDqG9qDDtyJYDWWqoUw1lKnOZebM3SnTAsAfn5XZWLEfh-xwJA</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Zhang, Jinglin</creator><creator>Liu, Pu</creator><creator>Zhang, Feng</creator><creator>Iwabuchi, Hironobu</creator><creator>de Moura, Antonio Artur de H. e Ayres</creator><creator>de Albuquerque, Victor Hugo C.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-6656-7286</orcidid><orcidid>https://orcid.org/0000-0002-9311-8598</orcidid><orcidid>https://orcid.org/0000-0003-3886-4309</orcidid><orcidid>https://orcid.org/0000-0001-7499-1992</orcidid></search><sort><creationdate>20210301</creationdate><title>Ensemble Meteorological Cloud Classification Meets Internet of Dependable and Controllable Things</title><author>Zhang, Jinglin ; Liu, Pu ; Zhang, Feng ; Iwabuchi, Hironobu ; de Moura, Antonio Artur de H. e Ayres ; de Albuquerque, Victor Hugo C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-d19188c70b9f661caf3c4e132e5f170058266ef5ae006561247c90c5a4e47cfc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Cirrus cumulus stratus nimbus data set</topic><topic>Classification</topic><topic>Classifiers</topic><topic>Cloud computing</topic><topic>Computer architecture</topic><topic>convolutional neural networks</topic><topic>Data transmission</topic><topic>dependable and controllable things</topic><topic>Edge computing</topic><topic>ensemble learning (EL)</topic><topic>Intelligent networks</topic><topic>Internet of Things</topic><topic>Machine learning</topic><topic>meteorological cloud classification</topic><topic>Neural networks</topic><topic>Remote monitoring</topic><topic>Remote observing</topic><topic>Resource allocation</topic><topic>Stacking</topic><topic>Task analysis</topic><topic>Temperature sensors</topic><topic>Training</topic><topic>Weather</topic><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Jinglin</creatorcontrib><creatorcontrib>Liu, Pu</creatorcontrib><creatorcontrib>Zhang, Feng</creatorcontrib><creatorcontrib>Iwabuchi, Hironobu</creatorcontrib><creatorcontrib>de Moura, Antonio Artur de H. e Ayres</creatorcontrib><creatorcontrib>de Albuquerque, Victor Hugo C.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE internet of things journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhang, Jinglin</au><au>Liu, Pu</au><au>Zhang, Feng</au><au>Iwabuchi, Hironobu</au><au>de Moura, Antonio Artur de H. e Ayres</au><au>de Albuquerque, Victor Hugo C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ensemble Meteorological Cloud Classification Meets Internet of Dependable and Controllable Things</atitle><jtitle>IEEE internet of things journal</jtitle><stitle>JIoT</stitle><date>2021-03-01</date><risdate>2021</risdate><volume>8</volume><issue>5</issue><spage>3323</spage><epage>3330</epage><pages>3323-3330</pages><issn>2327-4662</issn><eissn>2327-4662</eissn><coden>IITJAU</coden><abstract>Advances in Internet of Things (IoT) and cloud/edge computing systems could precisely monitor the meteorological elements and environmental conditions. Remote automated observation system (RAOS) makes the full use of IoT to communicate with other sensors, enabling the active responses from passive devices for smart weather. Cloud observation and classification have been regarded as a successful application that could automatically perform emergency tasks in RAOS. However, with the increasing growth of resource exploitation, the performance of communications among the automatic observation platforms, and the efficiency of task allocation among them has become a critical challenge. In this article, an ensemble learning method and resource allocation scheme are proposed to realize the cloud observation and classification with the help of reliable and controllable infrastructures. On the one hand, several ensemble methods, like Bagging, AdaBoost, and Snapshot are selected as a base classifier to capture the cross-semantic and structure features of cloud, while applying them to the ensemble using convolutional neural networks with different base learners and residual neural networks with different depths. on the other hand, a particular cloud-edge distributed framework is proposed for cloud classification approach based on the intelligent network, to overcome the difficulty in the massive data transmission. The experimental results verify that the proposed ensemble approach achieves high accuracy of cloud classification, and effectively improves the number of allocated tasks. Ensemble methods can generate a more accurate prediction than any single classifier or the majority algorithms. It consistently yields lower error rates than single state-of-the-art models at no additional training cost.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JIOT.2020.3043289</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-6656-7286</orcidid><orcidid>https://orcid.org/0000-0002-9311-8598</orcidid><orcidid>https://orcid.org/0000-0003-3886-4309</orcidid><orcidid>https://orcid.org/0000-0001-7499-1992</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2327-4662 |
ispartof | IEEE internet of things journal, 2021-03, Vol.8 (5), p.3323-3330 |
issn | 2327-4662 2327-4662 |
language | eng |
recordid | cdi_crossref_primary_10_1109_JIOT_2020_3043289 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Artificial neural networks Cirrus cumulus stratus nimbus data set Classification Classifiers Cloud computing Computer architecture convolutional neural networks Data transmission dependable and controllable things Edge computing ensemble learning (EL) Intelligent networks Internet of Things Machine learning meteorological cloud classification Neural networks Remote monitoring Remote observing Resource allocation Stacking Task analysis Temperature sensors Training Weather |
title | Ensemble Meteorological Cloud Classification Meets Internet of Dependable and Controllable Things |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T01%3A14%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ensemble%20Meteorological%20Cloud%20Classification%20Meets%20Internet%20of%20Dependable%20and%20Controllable%20Things&rft.jtitle=IEEE%20internet%20of%20things%20journal&rft.au=Zhang,%20Jinglin&rft.date=2021-03-01&rft.volume=8&rft.issue=5&rft.spage=3323&rft.epage=3330&rft.pages=3323-3330&rft.issn=2327-4662&rft.eissn=2327-4662&rft.coden=IITJAU&rft_id=info:doi/10.1109/JIOT.2020.3043289&rft_dat=%3Cproquest_RIE%3E2492856531%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2492856531&rft_id=info:pmid/&rft_ieee_id=9286534&rfr_iscdi=true |