Ensemble Meteorological Cloud Classification Meets Internet of Dependable and Controllable Things

Advances in Internet of Things (IoT) and cloud/edge computing systems could precisely monitor the meteorological elements and environmental conditions. Remote automated observation system (RAOS) makes the full use of IoT to communicate with other sensors, enabling the active responses from passive d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE internet of things journal 2021-03, Vol.8 (5), p.3323-3330
Hauptverfasser: Zhang, Jinglin, Liu, Pu, Zhang, Feng, Iwabuchi, Hironobu, de Moura, Antonio Artur de H. e Ayres, de Albuquerque, Victor Hugo C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3330
container_issue 5
container_start_page 3323
container_title IEEE internet of things journal
container_volume 8
creator Zhang, Jinglin
Liu, Pu
Zhang, Feng
Iwabuchi, Hironobu
de Moura, Antonio Artur de H. e Ayres
de Albuquerque, Victor Hugo C.
description Advances in Internet of Things (IoT) and cloud/edge computing systems could precisely monitor the meteorological elements and environmental conditions. Remote automated observation system (RAOS) makes the full use of IoT to communicate with other sensors, enabling the active responses from passive devices for smart weather. Cloud observation and classification have been regarded as a successful application that could automatically perform emergency tasks in RAOS. However, with the increasing growth of resource exploitation, the performance of communications among the automatic observation platforms, and the efficiency of task allocation among them has become a critical challenge. In this article, an ensemble learning method and resource allocation scheme are proposed to realize the cloud observation and classification with the help of reliable and controllable infrastructures. On the one hand, several ensemble methods, like Bagging, AdaBoost, and Snapshot are selected as a base classifier to capture the cross-semantic and structure features of cloud, while applying them to the ensemble using convolutional neural networks with different base learners and residual neural networks with different depths. on the other hand, a particular cloud-edge distributed framework is proposed for cloud classification approach based on the intelligent network, to overcome the difficulty in the massive data transmission. The experimental results verify that the proposed ensemble approach achieves high accuracy of cloud classification, and effectively improves the number of allocated tasks. Ensemble methods can generate a more accurate prediction than any single classifier or the majority algorithms. It consistently yields lower error rates than single state-of-the-art models at no additional training cost.
doi_str_mv 10.1109/JIOT.2020.3043289
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JIOT_2020_3043289</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9286534</ieee_id><sourcerecordid>2492856531</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-d19188c70b9f661caf3c4e132e5f170058266ef5ae006561247c90c5a4e47cfc3</originalsourceid><addsrcrecordid>eNpNkM1KAzEURoMoWGofQNwMuJ6an0lmspRatVLppq5Dmt7UKdOkJpmFb2_GFnGTXC7nOxc-hG4JnhKC5cPbYrWeUkzxlOGK0UZeoBFltC4rIejlv_kaTWLcY4xzjBMpRkjPXYTDpoPiHRL44Du_a43uilnn-21-dYytzZvUepcZSLFYuATBQSq8LZ7gCG6rB4F2mfcuZUf3u1h_tm4Xb9CV1V2Eyfkfo4_n-Xr2Wi5XL4vZ47I0VLJUbokkTWNqvJFWCGK0ZaYCwihwS2qMeUOFAMs1YCy4ILSqjcSG6wryZA0bo_uT9xj8Vw8xqb3vg8snFa0kbbjgjGSKnCgTfIwBrDqG9qDDtyJYDWWqoUw1lKnOZebM3SnTAsAfn5XZWLEfh-xwJA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2492856531</pqid></control><display><type>article</type><title>Ensemble Meteorological Cloud Classification Meets Internet of Dependable and Controllable Things</title><source>IEEE Electronic Library (IEL)</source><creator>Zhang, Jinglin ; Liu, Pu ; Zhang, Feng ; Iwabuchi, Hironobu ; de Moura, Antonio Artur de H. e Ayres ; de Albuquerque, Victor Hugo C.</creator><creatorcontrib>Zhang, Jinglin ; Liu, Pu ; Zhang, Feng ; Iwabuchi, Hironobu ; de Moura, Antonio Artur de H. e Ayres ; de Albuquerque, Victor Hugo C.</creatorcontrib><description>Advances in Internet of Things (IoT) and cloud/edge computing systems could precisely monitor the meteorological elements and environmental conditions. Remote automated observation system (RAOS) makes the full use of IoT to communicate with other sensors, enabling the active responses from passive devices for smart weather. Cloud observation and classification have been regarded as a successful application that could automatically perform emergency tasks in RAOS. However, with the increasing growth of resource exploitation, the performance of communications among the automatic observation platforms, and the efficiency of task allocation among them has become a critical challenge. In this article, an ensemble learning method and resource allocation scheme are proposed to realize the cloud observation and classification with the help of reliable and controllable infrastructures. On the one hand, several ensemble methods, like Bagging, AdaBoost, and Snapshot are selected as a base classifier to capture the cross-semantic and structure features of cloud, while applying them to the ensemble using convolutional neural networks with different base learners and residual neural networks with different depths. on the other hand, a particular cloud-edge distributed framework is proposed for cloud classification approach based on the intelligent network, to overcome the difficulty in the massive data transmission. The experimental results verify that the proposed ensemble approach achieves high accuracy of cloud classification, and effectively improves the number of allocated tasks. Ensemble methods can generate a more accurate prediction than any single classifier or the majority algorithms. It consistently yields lower error rates than single state-of-the-art models at no additional training cost.</description><identifier>ISSN: 2327-4662</identifier><identifier>EISSN: 2327-4662</identifier><identifier>DOI: 10.1109/JIOT.2020.3043289</identifier><identifier>CODEN: IITJAU</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Artificial neural networks ; Cirrus cumulus stratus nimbus data set ; Classification ; Classifiers ; Cloud computing ; Computer architecture ; convolutional neural networks ; Data transmission ; dependable and controllable things ; Edge computing ; ensemble learning (EL) ; Intelligent networks ; Internet of Things ; Machine learning ; meteorological cloud classification ; Neural networks ; Remote monitoring ; Remote observing ; Resource allocation ; Stacking ; Task analysis ; Temperature sensors ; Training ; Weather</subject><ispartof>IEEE internet of things journal, 2021-03, Vol.8 (5), p.3323-3330</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-d19188c70b9f661caf3c4e132e5f170058266ef5ae006561247c90c5a4e47cfc3</citedby><cites>FETCH-LOGICAL-c293t-d19188c70b9f661caf3c4e132e5f170058266ef5ae006561247c90c5a4e47cfc3</cites><orcidid>0000-0001-6656-7286 ; 0000-0002-9311-8598 ; 0000-0003-3886-4309 ; 0000-0001-7499-1992</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9286534$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,778,782,794,27907,27908,54741</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9286534$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhang, Jinglin</creatorcontrib><creatorcontrib>Liu, Pu</creatorcontrib><creatorcontrib>Zhang, Feng</creatorcontrib><creatorcontrib>Iwabuchi, Hironobu</creatorcontrib><creatorcontrib>de Moura, Antonio Artur de H. e Ayres</creatorcontrib><creatorcontrib>de Albuquerque, Victor Hugo C.</creatorcontrib><title>Ensemble Meteorological Cloud Classification Meets Internet of Dependable and Controllable Things</title><title>IEEE internet of things journal</title><addtitle>JIoT</addtitle><description>Advances in Internet of Things (IoT) and cloud/edge computing systems could precisely monitor the meteorological elements and environmental conditions. Remote automated observation system (RAOS) makes the full use of IoT to communicate with other sensors, enabling the active responses from passive devices for smart weather. Cloud observation and classification have been regarded as a successful application that could automatically perform emergency tasks in RAOS. However, with the increasing growth of resource exploitation, the performance of communications among the automatic observation platforms, and the efficiency of task allocation among them has become a critical challenge. In this article, an ensemble learning method and resource allocation scheme are proposed to realize the cloud observation and classification with the help of reliable and controllable infrastructures. On the one hand, several ensemble methods, like Bagging, AdaBoost, and Snapshot are selected as a base classifier to capture the cross-semantic and structure features of cloud, while applying them to the ensemble using convolutional neural networks with different base learners and residual neural networks with different depths. on the other hand, a particular cloud-edge distributed framework is proposed for cloud classification approach based on the intelligent network, to overcome the difficulty in the massive data transmission. The experimental results verify that the proposed ensemble approach achieves high accuracy of cloud classification, and effectively improves the number of allocated tasks. Ensemble methods can generate a more accurate prediction than any single classifier or the majority algorithms. It consistently yields lower error rates than single state-of-the-art models at no additional training cost.</description><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Cirrus cumulus stratus nimbus data set</subject><subject>Classification</subject><subject>Classifiers</subject><subject>Cloud computing</subject><subject>Computer architecture</subject><subject>convolutional neural networks</subject><subject>Data transmission</subject><subject>dependable and controllable things</subject><subject>Edge computing</subject><subject>ensemble learning (EL)</subject><subject>Intelligent networks</subject><subject>Internet of Things</subject><subject>Machine learning</subject><subject>meteorological cloud classification</subject><subject>Neural networks</subject><subject>Remote monitoring</subject><subject>Remote observing</subject><subject>Resource allocation</subject><subject>Stacking</subject><subject>Task analysis</subject><subject>Temperature sensors</subject><subject>Training</subject><subject>Weather</subject><issn>2327-4662</issn><issn>2327-4662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkM1KAzEURoMoWGofQNwMuJ6an0lmspRatVLppq5Dmt7UKdOkJpmFb2_GFnGTXC7nOxc-hG4JnhKC5cPbYrWeUkzxlOGK0UZeoBFltC4rIejlv_kaTWLcY4xzjBMpRkjPXYTDpoPiHRL44Du_a43uilnn-21-dYytzZvUepcZSLFYuATBQSq8LZ7gCG6rB4F2mfcuZUf3u1h_tm4Xb9CV1V2Eyfkfo4_n-Xr2Wi5XL4vZ47I0VLJUbokkTWNqvJFWCGK0ZaYCwihwS2qMeUOFAMs1YCy4ILSqjcSG6wryZA0bo_uT9xj8Vw8xqb3vg8snFa0kbbjgjGSKnCgTfIwBrDqG9qDDtyJYDWWqoUw1lKnOZebM3SnTAsAfn5XZWLEfh-xwJA</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Zhang, Jinglin</creator><creator>Liu, Pu</creator><creator>Zhang, Feng</creator><creator>Iwabuchi, Hironobu</creator><creator>de Moura, Antonio Artur de H. e Ayres</creator><creator>de Albuquerque, Victor Hugo C.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-6656-7286</orcidid><orcidid>https://orcid.org/0000-0002-9311-8598</orcidid><orcidid>https://orcid.org/0000-0003-3886-4309</orcidid><orcidid>https://orcid.org/0000-0001-7499-1992</orcidid></search><sort><creationdate>20210301</creationdate><title>Ensemble Meteorological Cloud Classification Meets Internet of Dependable and Controllable Things</title><author>Zhang, Jinglin ; Liu, Pu ; Zhang, Feng ; Iwabuchi, Hironobu ; de Moura, Antonio Artur de H. e Ayres ; de Albuquerque, Victor Hugo C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-d19188c70b9f661caf3c4e132e5f170058266ef5ae006561247c90c5a4e47cfc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Cirrus cumulus stratus nimbus data set</topic><topic>Classification</topic><topic>Classifiers</topic><topic>Cloud computing</topic><topic>Computer architecture</topic><topic>convolutional neural networks</topic><topic>Data transmission</topic><topic>dependable and controllable things</topic><topic>Edge computing</topic><topic>ensemble learning (EL)</topic><topic>Intelligent networks</topic><topic>Internet of Things</topic><topic>Machine learning</topic><topic>meteorological cloud classification</topic><topic>Neural networks</topic><topic>Remote monitoring</topic><topic>Remote observing</topic><topic>Resource allocation</topic><topic>Stacking</topic><topic>Task analysis</topic><topic>Temperature sensors</topic><topic>Training</topic><topic>Weather</topic><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Jinglin</creatorcontrib><creatorcontrib>Liu, Pu</creatorcontrib><creatorcontrib>Zhang, Feng</creatorcontrib><creatorcontrib>Iwabuchi, Hironobu</creatorcontrib><creatorcontrib>de Moura, Antonio Artur de H. e Ayres</creatorcontrib><creatorcontrib>de Albuquerque, Victor Hugo C.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE internet of things journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhang, Jinglin</au><au>Liu, Pu</au><au>Zhang, Feng</au><au>Iwabuchi, Hironobu</au><au>de Moura, Antonio Artur de H. e Ayres</au><au>de Albuquerque, Victor Hugo C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ensemble Meteorological Cloud Classification Meets Internet of Dependable and Controllable Things</atitle><jtitle>IEEE internet of things journal</jtitle><stitle>JIoT</stitle><date>2021-03-01</date><risdate>2021</risdate><volume>8</volume><issue>5</issue><spage>3323</spage><epage>3330</epage><pages>3323-3330</pages><issn>2327-4662</issn><eissn>2327-4662</eissn><coden>IITJAU</coden><abstract>Advances in Internet of Things (IoT) and cloud/edge computing systems could precisely monitor the meteorological elements and environmental conditions. Remote automated observation system (RAOS) makes the full use of IoT to communicate with other sensors, enabling the active responses from passive devices for smart weather. Cloud observation and classification have been regarded as a successful application that could automatically perform emergency tasks in RAOS. However, with the increasing growth of resource exploitation, the performance of communications among the automatic observation platforms, and the efficiency of task allocation among them has become a critical challenge. In this article, an ensemble learning method and resource allocation scheme are proposed to realize the cloud observation and classification with the help of reliable and controllable infrastructures. On the one hand, several ensemble methods, like Bagging, AdaBoost, and Snapshot are selected as a base classifier to capture the cross-semantic and structure features of cloud, while applying them to the ensemble using convolutional neural networks with different base learners and residual neural networks with different depths. on the other hand, a particular cloud-edge distributed framework is proposed for cloud classification approach based on the intelligent network, to overcome the difficulty in the massive data transmission. The experimental results verify that the proposed ensemble approach achieves high accuracy of cloud classification, and effectively improves the number of allocated tasks. Ensemble methods can generate a more accurate prediction than any single classifier or the majority algorithms. It consistently yields lower error rates than single state-of-the-art models at no additional training cost.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JIOT.2020.3043289</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-6656-7286</orcidid><orcidid>https://orcid.org/0000-0002-9311-8598</orcidid><orcidid>https://orcid.org/0000-0003-3886-4309</orcidid><orcidid>https://orcid.org/0000-0001-7499-1992</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2327-4662
ispartof IEEE internet of things journal, 2021-03, Vol.8 (5), p.3323-3330
issn 2327-4662
2327-4662
language eng
recordid cdi_crossref_primary_10_1109_JIOT_2020_3043289
source IEEE Electronic Library (IEL)
subjects Algorithms
Artificial neural networks
Cirrus cumulus stratus nimbus data set
Classification
Classifiers
Cloud computing
Computer architecture
convolutional neural networks
Data transmission
dependable and controllable things
Edge computing
ensemble learning (EL)
Intelligent networks
Internet of Things
Machine learning
meteorological cloud classification
Neural networks
Remote monitoring
Remote observing
Resource allocation
Stacking
Task analysis
Temperature sensors
Training
Weather
title Ensemble Meteorological Cloud Classification Meets Internet of Dependable and Controllable Things
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T01%3A14%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ensemble%20Meteorological%20Cloud%20Classification%20Meets%20Internet%20of%20Dependable%20and%20Controllable%20Things&rft.jtitle=IEEE%20internet%20of%20things%20journal&rft.au=Zhang,%20Jinglin&rft.date=2021-03-01&rft.volume=8&rft.issue=5&rft.spage=3323&rft.epage=3330&rft.pages=3323-3330&rft.issn=2327-4662&rft.eissn=2327-4662&rft.coden=IITJAU&rft_id=info:doi/10.1109/JIOT.2020.3043289&rft_dat=%3Cproquest_RIE%3E2492856531%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2492856531&rft_id=info:pmid/&rft_ieee_id=9286534&rfr_iscdi=true