WiFi and Vision-Integrated Fingerprint for Smartphone-Based Self-Localization in Public Indoor Scenes
Smartphone-based indoor localization systems are increasingly needed in various types of applications. This article proposes a novel WiFi and vision-integrated fingerprint (Wi-Vi fingerprint) for accurate and robust indoor localization. The method consists of two steps of fingerprint mapping and fin...
Gespeichert in:
Veröffentlicht in: | IEEE internet of things journal 2020-08, Vol.7 (8), p.6748-6761 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6761 |
---|---|
container_issue | 8 |
container_start_page | 6748 |
container_title | IEEE internet of things journal |
container_volume | 7 |
creator | Huang, Gang Hu, Zhaozheng Wu, Jie Xiao, Hanbiao Zhang, Fan |
description | Smartphone-based indoor localization systems are increasingly needed in various types of applications. This article proposes a novel WiFi and vision-integrated fingerprint (Wi-Vi fingerprint) for accurate and robust indoor localization. The method consists of two steps of fingerprint mapping and fingerprint localization. In the mapping step, the Wi-Vi fingerprints for all the sampling sites are computed by using EXIT signs as landmarks. In the localization step, a multiscale localization strategy is proposed, which includes coarse localization from weighted access points (WAPs)-based WiFi matching, the Gaussian weighted KNN (GW-KNN)-based image-level localization from holistic visual features, and finally, the metric localization for refinement. The proposed method has been tested in an indoor office building of 12 000 m 2 and a mega-mall of 7200 m 2 with different types of smartphones. The experimental results demonstrate that the proposed method can achieve 95% and 98% site recognition rates from image-level localization. The final localization errors after metric localization are less than a half meter on average. |
doi_str_mv | 10.1109/JIOT.2020.2974928 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JIOT_2020_2974928</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9001071</ieee_id><sourcerecordid>2434124234</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-d7431ae44793514d0f643d19cb684fc67c2712ffff9a889173c093de9a26fd263</originalsourceid><addsrcrecordid>eNpNkE1LAzEQhoMoWLQ_QLwEPG_NV5PmqMXqSqFCqx5Dmo-asmZrsj3orzdLiziXmcP7zDAPAFcYjTBG8va5XqxGBBE0IlIwSSYnYEAoERXjnJz-m8_BMOctQqhgYyz5ALj3MAtQRwvfQg5trOrYuU3SnbNwFuLGpV0KsYO-TXD5qVO3-2ijq-51LoGla3w1b41uwo_uCg1DhC_7dRMMrKNte8a46PIlOPO6yW547Bfgdfawmj5V88VjPb2bV4aOZVdZwSjWjjEh6Rgzizxn1GJp1nzCvOHCEIGJLyX1ZCKxoAZJap3UhHtLOL0AN4e9u9R-7V3u1Lbdp1hOKsIow4QRykoKH1ImtTkn51X5sfz2rTBSvVDVC1W9UHUUWpjrAxOcc395WUwigekvEsNxJQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2434124234</pqid></control><display><type>article</type><title>WiFi and Vision-Integrated Fingerprint for Smartphone-Based Self-Localization in Public Indoor Scenes</title><source>IEEE Electronic Library (IEL)</source><creator>Huang, Gang ; Hu, Zhaozheng ; Wu, Jie ; Xiao, Hanbiao ; Zhang, Fan</creator><creatorcontrib>Huang, Gang ; Hu, Zhaozheng ; Wu, Jie ; Xiao, Hanbiao ; Zhang, Fan</creatorcontrib><description>Smartphone-based indoor localization systems are increasingly needed in various types of applications. This article proposes a novel WiFi and vision-integrated fingerprint (Wi-Vi fingerprint) for accurate and robust indoor localization. The method consists of two steps of fingerprint mapping and fingerprint localization. In the mapping step, the Wi-Vi fingerprints for all the sampling sites are computed by using EXIT signs as landmarks. In the localization step, a multiscale localization strategy is proposed, which includes coarse localization from weighted access points (WAPs)-based WiFi matching, the Gaussian weighted KNN (GW-KNN)-based image-level localization from holistic visual features, and finally, the metric localization for refinement. The proposed method has been tested in an indoor office building of 12 000 m 2 and a mega-mall of 7200 m 2 with different types of smartphones. The experimental results demonstrate that the proposed method can achieve 95% and 98% site recognition rates from image-level localization. The final localization errors after metric localization are less than a half meter on average.</description><identifier>ISSN: 2327-4662</identifier><identifier>EISSN: 2327-4662</identifier><identifier>DOI: 10.1109/JIOT.2020.2974928</identifier><identifier>CODEN: IITJAU</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Fingerprint recognition ; Fingerprints ; Indoor self-localization ; Localization ; Mapping ; multiscale localization ; Object recognition ; Office buildings ; Sensors ; Smart phones ; Smartphones ; Vision ; visual features ; Visualization ; Wi-Vi fingerprint ; Wireless communication ; Wireless fidelity ; Wireless sensor networks</subject><ispartof>IEEE internet of things journal, 2020-08, Vol.7 (8), p.6748-6761</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-d7431ae44793514d0f643d19cb684fc67c2712ffff9a889173c093de9a26fd263</citedby><cites>FETCH-LOGICAL-c359t-d7431ae44793514d0f643d19cb684fc67c2712ffff9a889173c093de9a26fd263</cites><orcidid>0000-0003-4575-4749 ; 0000-0003-1612-9872</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9001071$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9001071$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Huang, Gang</creatorcontrib><creatorcontrib>Hu, Zhaozheng</creatorcontrib><creatorcontrib>Wu, Jie</creatorcontrib><creatorcontrib>Xiao, Hanbiao</creatorcontrib><creatorcontrib>Zhang, Fan</creatorcontrib><title>WiFi and Vision-Integrated Fingerprint for Smartphone-Based Self-Localization in Public Indoor Scenes</title><title>IEEE internet of things journal</title><addtitle>JIoT</addtitle><description>Smartphone-based indoor localization systems are increasingly needed in various types of applications. This article proposes a novel WiFi and vision-integrated fingerprint (Wi-Vi fingerprint) for accurate and robust indoor localization. The method consists of two steps of fingerprint mapping and fingerprint localization. In the mapping step, the Wi-Vi fingerprints for all the sampling sites are computed by using EXIT signs as landmarks. In the localization step, a multiscale localization strategy is proposed, which includes coarse localization from weighted access points (WAPs)-based WiFi matching, the Gaussian weighted KNN (GW-KNN)-based image-level localization from holistic visual features, and finally, the metric localization for refinement. The proposed method has been tested in an indoor office building of 12 000 m 2 and a mega-mall of 7200 m 2 with different types of smartphones. The experimental results demonstrate that the proposed method can achieve 95% and 98% site recognition rates from image-level localization. The final localization errors after metric localization are less than a half meter on average.</description><subject>Fingerprint recognition</subject><subject>Fingerprints</subject><subject>Indoor self-localization</subject><subject>Localization</subject><subject>Mapping</subject><subject>multiscale localization</subject><subject>Object recognition</subject><subject>Office buildings</subject><subject>Sensors</subject><subject>Smart phones</subject><subject>Smartphones</subject><subject>Vision</subject><subject>visual features</subject><subject>Visualization</subject><subject>Wi-Vi fingerprint</subject><subject>Wireless communication</subject><subject>Wireless fidelity</subject><subject>Wireless sensor networks</subject><issn>2327-4662</issn><issn>2327-4662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1LAzEQhoMoWLQ_QLwEPG_NV5PmqMXqSqFCqx5Dmo-asmZrsj3orzdLiziXmcP7zDAPAFcYjTBG8va5XqxGBBE0IlIwSSYnYEAoERXjnJz-m8_BMOctQqhgYyz5ALj3MAtQRwvfQg5trOrYuU3SnbNwFuLGpV0KsYO-TXD5qVO3-2ijq-51LoGla3w1b41uwo_uCg1DhC_7dRMMrKNte8a46PIlOPO6yW547Bfgdfawmj5V88VjPb2bV4aOZVdZwSjWjjEh6Rgzizxn1GJp1nzCvOHCEIGJLyX1ZCKxoAZJap3UhHtLOL0AN4e9u9R-7V3u1Lbdp1hOKsIow4QRykoKH1ImtTkn51X5sfz2rTBSvVDVC1W9UHUUWpjrAxOcc395WUwigekvEsNxJQ</recordid><startdate>20200801</startdate><enddate>20200801</enddate><creator>Huang, Gang</creator><creator>Hu, Zhaozheng</creator><creator>Wu, Jie</creator><creator>Xiao, Hanbiao</creator><creator>Zhang, Fan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-4575-4749</orcidid><orcidid>https://orcid.org/0000-0003-1612-9872</orcidid></search><sort><creationdate>20200801</creationdate><title>WiFi and Vision-Integrated Fingerprint for Smartphone-Based Self-Localization in Public Indoor Scenes</title><author>Huang, Gang ; Hu, Zhaozheng ; Wu, Jie ; Xiao, Hanbiao ; Zhang, Fan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-d7431ae44793514d0f643d19cb684fc67c2712ffff9a889173c093de9a26fd263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Fingerprint recognition</topic><topic>Fingerprints</topic><topic>Indoor self-localization</topic><topic>Localization</topic><topic>Mapping</topic><topic>multiscale localization</topic><topic>Object recognition</topic><topic>Office buildings</topic><topic>Sensors</topic><topic>Smart phones</topic><topic>Smartphones</topic><topic>Vision</topic><topic>visual features</topic><topic>Visualization</topic><topic>Wi-Vi fingerprint</topic><topic>Wireless communication</topic><topic>Wireless fidelity</topic><topic>Wireless sensor networks</topic><toplevel>online_resources</toplevel><creatorcontrib>Huang, Gang</creatorcontrib><creatorcontrib>Hu, Zhaozheng</creatorcontrib><creatorcontrib>Wu, Jie</creatorcontrib><creatorcontrib>Xiao, Hanbiao</creatorcontrib><creatorcontrib>Zhang, Fan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE internet of things journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Huang, Gang</au><au>Hu, Zhaozheng</au><au>Wu, Jie</au><au>Xiao, Hanbiao</au><au>Zhang, Fan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>WiFi and Vision-Integrated Fingerprint for Smartphone-Based Self-Localization in Public Indoor Scenes</atitle><jtitle>IEEE internet of things journal</jtitle><stitle>JIoT</stitle><date>2020-08-01</date><risdate>2020</risdate><volume>7</volume><issue>8</issue><spage>6748</spage><epage>6761</epage><pages>6748-6761</pages><issn>2327-4662</issn><eissn>2327-4662</eissn><coden>IITJAU</coden><abstract>Smartphone-based indoor localization systems are increasingly needed in various types of applications. This article proposes a novel WiFi and vision-integrated fingerprint (Wi-Vi fingerprint) for accurate and robust indoor localization. The method consists of two steps of fingerprint mapping and fingerprint localization. In the mapping step, the Wi-Vi fingerprints for all the sampling sites are computed by using EXIT signs as landmarks. In the localization step, a multiscale localization strategy is proposed, which includes coarse localization from weighted access points (WAPs)-based WiFi matching, the Gaussian weighted KNN (GW-KNN)-based image-level localization from holistic visual features, and finally, the metric localization for refinement. The proposed method has been tested in an indoor office building of 12 000 m 2 and a mega-mall of 7200 m 2 with different types of smartphones. The experimental results demonstrate that the proposed method can achieve 95% and 98% site recognition rates from image-level localization. The final localization errors after metric localization are less than a half meter on average.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JIOT.2020.2974928</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-4575-4749</orcidid><orcidid>https://orcid.org/0000-0003-1612-9872</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2327-4662 |
ispartof | IEEE internet of things journal, 2020-08, Vol.7 (8), p.6748-6761 |
issn | 2327-4662 2327-4662 |
language | eng |
recordid | cdi_crossref_primary_10_1109_JIOT_2020_2974928 |
source | IEEE Electronic Library (IEL) |
subjects | Fingerprint recognition Fingerprints Indoor self-localization Localization Mapping multiscale localization Object recognition Office buildings Sensors Smart phones Smartphones Vision visual features Visualization Wi-Vi fingerprint Wireless communication Wireless fidelity Wireless sensor networks |
title | WiFi and Vision-Integrated Fingerprint for Smartphone-Based Self-Localization in Public Indoor Scenes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T00%3A38%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=WiFi%20and%20Vision-Integrated%20Fingerprint%20for%20Smartphone-Based%20Self-Localization%20in%20Public%20Indoor%20Scenes&rft.jtitle=IEEE%20internet%20of%20things%20journal&rft.au=Huang,%20Gang&rft.date=2020-08-01&rft.volume=7&rft.issue=8&rft.spage=6748&rft.epage=6761&rft.pages=6748-6761&rft.issn=2327-4662&rft.eissn=2327-4662&rft.coden=IITJAU&rft_id=info:doi/10.1109/JIOT.2020.2974928&rft_dat=%3Cproquest_RIE%3E2434124234%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2434124234&rft_id=info:pmid/&rft_ieee_id=9001071&rfr_iscdi=true |