Optimal UAV Route in Wireless Charging Sensor Networks
An unmanned aerial vehicle (UAV) can be utilized as a flying data collector and wireless power source in wireless charging sensor networks (WCSNs). Different from conventional studies that focused on maximizing the efficiency of wireless power transfer (WPT) for UAV route design, in this article, we...
Gespeichert in:
Veröffentlicht in: | IEEE internet of things journal 2020-02, Vol.7 (2), p.1327-1335 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1335 |
---|---|
container_issue | 2 |
container_start_page | 1327 |
container_title | IEEE internet of things journal |
container_volume | 7 |
creator | Baek, Jaeuk Han, Sang Ik Han, Youngnam |
description | An unmanned aerial vehicle (UAV) can be utilized as a flying data collector and wireless power source in wireless charging sensor networks (WCSNs). Different from conventional studies that focused on maximizing the efficiency of wireless power transfer (WPT) for UAV route design, in this article, we maximize the lifetime of WCSNs by considering sensor energy consumption and energy harvesting simultaneously. We consider simultaneous wireless information and power transfer (SWIFT), where data collection capability guarantees power leftover for UAV to complete its round-trip flight. Our objective is to jointly optimize the UAV hovering location and duration to maximize the minimum energy of sensors after data transmission and energy harvesting under data collection and UAV energy consumption constraints. To tackle this nonconvex optimization problem, we first assume that the UAV hovering location for each sensor is fixed and optimize UAV hovering duration by the Lagrange multiplier method. Next, for each UAV hovering location, we propose a geometry-based update algorithm, which can be used to find initial feasible UAV routes to the problem. Last, a near-optimal UAV route is determined by adjusting the initial feasible UAV route iteratively, where UAV hovering locations and duration are updated at each iteration. The numerical results are provided to validate the performance of our proposed algorithm. |
doi_str_mv | 10.1109/JIOT.2019.2954530 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JIOT_2019_2954530</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8907457</ieee_id><sourcerecordid>2357213022</sourcerecordid><originalsourceid>FETCH-LOGICAL-c341t-a8e905f9ce7331ee6323750e01ed2d4da34a8a3f3428f16d3c9a695ca9ecd9bd3</originalsourceid><addsrcrecordid>eNpNkMFKAzEQhoMoWGofQLwEPG-dZJLs5liK2kqxoK0eQ9ydrVvrbk22iG_vlhbxNHP4v3-Yj7FLAUMhwN48TOeLoQRhh9JqpRFOWE-iTBNljDz9t5-zQYxrAOgwLazpMTPfttWn3_Dl6IU_NbuWeFXz1yrQhmLk43cfVlW94s9UxybwR2q_m_ARL9hZ6TeRBsfZZ8u728V4kszm99PxaJbkqESb-Iws6NLmlCIKIoMSUw0EggpZqMKj8pnHEpXMSmEKzK03VufeUl7YtwL77PrQuw3N145i69bNLtTdSSdRp1IgSNmlxCGVhybGQKXbhu6p8OMEuL0htzfk9obc0VDHXB2Yioj-8pmFVOkUfwFuC2B1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2357213022</pqid></control><display><type>article</type><title>Optimal UAV Route in Wireless Charging Sensor Networks</title><source>IEEE Electronic Library (IEL)</source><creator>Baek, Jaeuk ; Han, Sang Ik ; Han, Youngnam</creator><creatorcontrib>Baek, Jaeuk ; Han, Sang Ik ; Han, Youngnam</creatorcontrib><description>An unmanned aerial vehicle (UAV) can be utilized as a flying data collector and wireless power source in wireless charging sensor networks (WCSNs). Different from conventional studies that focused on maximizing the efficiency of wireless power transfer (WPT) for UAV route design, in this article, we maximize the lifetime of WCSNs by considering sensor energy consumption and energy harvesting simultaneously. We consider simultaneous wireless information and power transfer (SWIFT), where data collection capability guarantees power leftover for UAV to complete its round-trip flight. Our objective is to jointly optimize the UAV hovering location and duration to maximize the minimum energy of sensors after data transmission and energy harvesting under data collection and UAV energy consumption constraints. To tackle this nonconvex optimization problem, we first assume that the UAV hovering location for each sensor is fixed and optimize UAV hovering duration by the Lagrange multiplier method. Next, for each UAV hovering location, we propose a geometry-based update algorithm, which can be used to find initial feasible UAV routes to the problem. Last, a near-optimal UAV route is determined by adjusting the initial feasible UAV route iteratively, where UAV hovering locations and duration are updated at each iteration. The numerical results are provided to validate the performance of our proposed algorithm.</description><identifier>ISSN: 2327-4662</identifier><identifier>EISSN: 2327-4662</identifier><identifier>DOI: 10.1109/JIOT.2019.2954530</identifier><identifier>CODEN: IITJAU</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Charging ; Data collection ; Data communication ; Data transmission ; Energy consumption ; Energy harvesting ; Hovering ; Iterative methods ; Lagrange multiplier ; Optimization ; Power efficiency ; Route selection ; Sensors ; UAV hovering duration ; unmanned aerial vehicle (UAV) flight route ; Unmanned aerial vehicles ; Wireless communication ; Wireless networks ; Wireless power transmission ; wireless sensor network ; Wireless sensor networks</subject><ispartof>IEEE internet of things journal, 2020-02, Vol.7 (2), p.1327-1335</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c341t-a8e905f9ce7331ee6323750e01ed2d4da34a8a3f3428f16d3c9a695ca9ecd9bd3</citedby><cites>FETCH-LOGICAL-c341t-a8e905f9ce7331ee6323750e01ed2d4da34a8a3f3428f16d3c9a695ca9ecd9bd3</cites><orcidid>0000-0003-4043-9854 ; 0000-0002-5335-6161 ; 0000-0002-5263-4932</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8907457$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8907457$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Baek, Jaeuk</creatorcontrib><creatorcontrib>Han, Sang Ik</creatorcontrib><creatorcontrib>Han, Youngnam</creatorcontrib><title>Optimal UAV Route in Wireless Charging Sensor Networks</title><title>IEEE internet of things journal</title><addtitle>JIoT</addtitle><description>An unmanned aerial vehicle (UAV) can be utilized as a flying data collector and wireless power source in wireless charging sensor networks (WCSNs). Different from conventional studies that focused on maximizing the efficiency of wireless power transfer (WPT) for UAV route design, in this article, we maximize the lifetime of WCSNs by considering sensor energy consumption and energy harvesting simultaneously. We consider simultaneous wireless information and power transfer (SWIFT), where data collection capability guarantees power leftover for UAV to complete its round-trip flight. Our objective is to jointly optimize the UAV hovering location and duration to maximize the minimum energy of sensors after data transmission and energy harvesting under data collection and UAV energy consumption constraints. To tackle this nonconvex optimization problem, we first assume that the UAV hovering location for each sensor is fixed and optimize UAV hovering duration by the Lagrange multiplier method. Next, for each UAV hovering location, we propose a geometry-based update algorithm, which can be used to find initial feasible UAV routes to the problem. Last, a near-optimal UAV route is determined by adjusting the initial feasible UAV route iteratively, where UAV hovering locations and duration are updated at each iteration. The numerical results are provided to validate the performance of our proposed algorithm.</description><subject>Algorithms</subject><subject>Charging</subject><subject>Data collection</subject><subject>Data communication</subject><subject>Data transmission</subject><subject>Energy consumption</subject><subject>Energy harvesting</subject><subject>Hovering</subject><subject>Iterative methods</subject><subject>Lagrange multiplier</subject><subject>Optimization</subject><subject>Power efficiency</subject><subject>Route selection</subject><subject>Sensors</subject><subject>UAV hovering duration</subject><subject>unmanned aerial vehicle (UAV) flight route</subject><subject>Unmanned aerial vehicles</subject><subject>Wireless communication</subject><subject>Wireless networks</subject><subject>Wireless power transmission</subject><subject>wireless sensor network</subject><subject>Wireless sensor networks</subject><issn>2327-4662</issn><issn>2327-4662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkMFKAzEQhoMoWGofQLwEPG-dZJLs5liK2kqxoK0eQ9ydrVvrbk22iG_vlhbxNHP4v3-Yj7FLAUMhwN48TOeLoQRhh9JqpRFOWE-iTBNljDz9t5-zQYxrAOgwLazpMTPfttWn3_Dl6IU_NbuWeFXz1yrQhmLk43cfVlW94s9UxybwR2q_m_ARL9hZ6TeRBsfZZ8u728V4kszm99PxaJbkqESb-Iws6NLmlCIKIoMSUw0EggpZqMKj8pnHEpXMSmEKzK03VufeUl7YtwL77PrQuw3N145i69bNLtTdSSdRp1IgSNmlxCGVhybGQKXbhu6p8OMEuL0htzfk9obc0VDHXB2Yioj-8pmFVOkUfwFuC2B1</recordid><startdate>20200201</startdate><enddate>20200201</enddate><creator>Baek, Jaeuk</creator><creator>Han, Sang Ik</creator><creator>Han, Youngnam</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-4043-9854</orcidid><orcidid>https://orcid.org/0000-0002-5335-6161</orcidid><orcidid>https://orcid.org/0000-0002-5263-4932</orcidid></search><sort><creationdate>20200201</creationdate><title>Optimal UAV Route in Wireless Charging Sensor Networks</title><author>Baek, Jaeuk ; Han, Sang Ik ; Han, Youngnam</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c341t-a8e905f9ce7331ee6323750e01ed2d4da34a8a3f3428f16d3c9a695ca9ecd9bd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Charging</topic><topic>Data collection</topic><topic>Data communication</topic><topic>Data transmission</topic><topic>Energy consumption</topic><topic>Energy harvesting</topic><topic>Hovering</topic><topic>Iterative methods</topic><topic>Lagrange multiplier</topic><topic>Optimization</topic><topic>Power efficiency</topic><topic>Route selection</topic><topic>Sensors</topic><topic>UAV hovering duration</topic><topic>unmanned aerial vehicle (UAV) flight route</topic><topic>Unmanned aerial vehicles</topic><topic>Wireless communication</topic><topic>Wireless networks</topic><topic>Wireless power transmission</topic><topic>wireless sensor network</topic><topic>Wireless sensor networks</topic><toplevel>online_resources</toplevel><creatorcontrib>Baek, Jaeuk</creatorcontrib><creatorcontrib>Han, Sang Ik</creatorcontrib><creatorcontrib>Han, Youngnam</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE internet of things journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Baek, Jaeuk</au><au>Han, Sang Ik</au><au>Han, Youngnam</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal UAV Route in Wireless Charging Sensor Networks</atitle><jtitle>IEEE internet of things journal</jtitle><stitle>JIoT</stitle><date>2020-02-01</date><risdate>2020</risdate><volume>7</volume><issue>2</issue><spage>1327</spage><epage>1335</epage><pages>1327-1335</pages><issn>2327-4662</issn><eissn>2327-4662</eissn><coden>IITJAU</coden><abstract>An unmanned aerial vehicle (UAV) can be utilized as a flying data collector and wireless power source in wireless charging sensor networks (WCSNs). Different from conventional studies that focused on maximizing the efficiency of wireless power transfer (WPT) for UAV route design, in this article, we maximize the lifetime of WCSNs by considering sensor energy consumption and energy harvesting simultaneously. We consider simultaneous wireless information and power transfer (SWIFT), where data collection capability guarantees power leftover for UAV to complete its round-trip flight. Our objective is to jointly optimize the UAV hovering location and duration to maximize the minimum energy of sensors after data transmission and energy harvesting under data collection and UAV energy consumption constraints. To tackle this nonconvex optimization problem, we first assume that the UAV hovering location for each sensor is fixed and optimize UAV hovering duration by the Lagrange multiplier method. Next, for each UAV hovering location, we propose a geometry-based update algorithm, which can be used to find initial feasible UAV routes to the problem. Last, a near-optimal UAV route is determined by adjusting the initial feasible UAV route iteratively, where UAV hovering locations and duration are updated at each iteration. The numerical results are provided to validate the performance of our proposed algorithm.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JIOT.2019.2954530</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-4043-9854</orcidid><orcidid>https://orcid.org/0000-0002-5335-6161</orcidid><orcidid>https://orcid.org/0000-0002-5263-4932</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2327-4662 |
ispartof | IEEE internet of things journal, 2020-02, Vol.7 (2), p.1327-1335 |
issn | 2327-4662 2327-4662 |
language | eng |
recordid | cdi_crossref_primary_10_1109_JIOT_2019_2954530 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Charging Data collection Data communication Data transmission Energy consumption Energy harvesting Hovering Iterative methods Lagrange multiplier Optimization Power efficiency Route selection Sensors UAV hovering duration unmanned aerial vehicle (UAV) flight route Unmanned aerial vehicles Wireless communication Wireless networks Wireless power transmission wireless sensor network Wireless sensor networks |
title | Optimal UAV Route in Wireless Charging Sensor Networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T12%3A28%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20UAV%20Route%20in%20Wireless%20Charging%20Sensor%20Networks&rft.jtitle=IEEE%20internet%20of%20things%20journal&rft.au=Baek,%20Jaeuk&rft.date=2020-02-01&rft.volume=7&rft.issue=2&rft.spage=1327&rft.epage=1335&rft.pages=1327-1335&rft.issn=2327-4662&rft.eissn=2327-4662&rft.coden=IITJAU&rft_id=info:doi/10.1109/JIOT.2019.2954530&rft_dat=%3Cproquest_RIE%3E2357213022%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2357213022&rft_id=info:pmid/&rft_ieee_id=8907457&rfr_iscdi=true |