Task Allocation in Spatial Crowdsourcing: Current State and Future Directions

Spatial crowdsourcing (SC) is an emerging paradigm of crowdsourcing, which commits workers to move to some particular locations to perform spatio-temporal-relevant tasks (e.g., sensing and activity organization). Task allocation or worker selection is a significant problem that may impact the qualit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE internet of things journal 2018-06, Vol.5 (3), p.1749-1764
Hauptverfasser: Bin Guo, Yan Liu, Leye Wang, Li, Victor O. K., Lam, Jacqueline C. K., Zhiwen Yu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1764
container_issue 3
container_start_page 1749
container_title IEEE internet of things journal
container_volume 5
creator Bin Guo
Yan Liu
Leye Wang
Li, Victor O. K.
Lam, Jacqueline C. K.
Zhiwen Yu
description Spatial crowdsourcing (SC) is an emerging paradigm of crowdsourcing, which commits workers to move to some particular locations to perform spatio-temporal-relevant tasks (e.g., sensing and activity organization). Task allocation or worker selection is a significant problem that may impact the quality of completion of SC tasks. Based on a conceptual model and generic framework of SC task allocation, this paper first gives a review of the current state of research in this field, including single task allocation, multiple task allocation, low-cost task allocation, and quality-enhanced task allocation. We further investigate the future trends and open issues of SC task allocation, including skill-based task allocation, group recommendation and collaboration, task composition and decomposition, and privacypreserving task allocation. Finally, we discuss the practical issues on real-world deployment as well as the challenges for large-scale user study in SC task allocation.
doi_str_mv 10.1109/JIOT.2018.2815982
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JIOT_2018_2815982</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8316812</ieee_id><sourcerecordid>2055013799</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-2ec46736449cffc2b792f0682f70f29c48a39b7665ba6432e13a44359036b23c3</originalsourceid><addsrcrecordid>eNpNkEFLwzAUx4MoOOY-gHgJeO5MXtI08Taq08lkh9VzSLNUOms7kxbx25uyIZ7e__D_vff4IXRNyZxSou5eVptiDoTKOUiaKglnaAIMsoQLAef_8iWahbAnhEQspUpM0GthwgdeNE1nTV93La5bvD3EaBqc--57F7rB27p9v8f54L1re7ztTe-waXd4OfSDd_ih9s6OcLhCF5Vpgpud5hS9LR-L_DlZb55W-WKdWJaqPgFnuciY4FzZqrJQZgoqIiRUGalAWS4NU2UmRFoawRk4ygznESVMlMAsm6Lb496D774GF3q9j2-28aQGkqaEskyp2KLHlvVdCN5V-uDrT-N_NCV6FKdHcXoUp0_iInNzZGrn3F9fMiokBfYL9_Bn_w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2055013799</pqid></control><display><type>article</type><title>Task Allocation in Spatial Crowdsourcing: Current State and Future Directions</title><source>IEEE Electronic Library (IEL)</source><creator>Bin Guo ; Yan Liu ; Leye Wang ; Li, Victor O. K. ; Lam, Jacqueline C. K. ; Zhiwen Yu</creator><creatorcontrib>Bin Guo ; Yan Liu ; Leye Wang ; Li, Victor O. K. ; Lam, Jacqueline C. K. ; Zhiwen Yu</creatorcontrib><description>Spatial crowdsourcing (SC) is an emerging paradigm of crowdsourcing, which commits workers to move to some particular locations to perform spatio-temporal-relevant tasks (e.g., sensing and activity organization). Task allocation or worker selection is a significant problem that may impact the quality of completion of SC tasks. Based on a conceptual model and generic framework of SC task allocation, this paper first gives a review of the current state of research in this field, including single task allocation, multiple task allocation, low-cost task allocation, and quality-enhanced task allocation. We further investigate the future trends and open issues of SC task allocation, including skill-based task allocation, group recommendation and collaboration, task composition and decomposition, and privacypreserving task allocation. Finally, we discuss the practical issues on real-world deployment as well as the challenges for large-scale user study in SC task allocation.</description><identifier>ISSN: 2327-4662</identifier><identifier>EISSN: 2327-4662</identifier><identifier>DOI: 10.1109/JIOT.2018.2815982</identifier><identifier>CODEN: IITJAU</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Crowdsourcing ; Data quality ; grouping and collaborating ; Manufacturing execution systems ; Mobile handsets ; optimization ; Performance evaluation ; Resource management ; Sensors ; Servers ; spatial crowdsourcing (SC) ; task allocation ; Task analysis ; Vertical integration</subject><ispartof>IEEE internet of things journal, 2018-06, Vol.5 (3), p.1749-1764</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-2ec46736449cffc2b792f0682f70f29c48a39b7665ba6432e13a44359036b23c3</citedby><cites>FETCH-LOGICAL-c359t-2ec46736449cffc2b792f0682f70f29c48a39b7665ba6432e13a44359036b23c3</cites><orcidid>0000-0001-7631-3386 ; 0000-0002-9905-3238</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8316812$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8316812$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Bin Guo</creatorcontrib><creatorcontrib>Yan Liu</creatorcontrib><creatorcontrib>Leye Wang</creatorcontrib><creatorcontrib>Li, Victor O. K.</creatorcontrib><creatorcontrib>Lam, Jacqueline C. K.</creatorcontrib><creatorcontrib>Zhiwen Yu</creatorcontrib><title>Task Allocation in Spatial Crowdsourcing: Current State and Future Directions</title><title>IEEE internet of things journal</title><addtitle>JIoT</addtitle><description>Spatial crowdsourcing (SC) is an emerging paradigm of crowdsourcing, which commits workers to move to some particular locations to perform spatio-temporal-relevant tasks (e.g., sensing and activity organization). Task allocation or worker selection is a significant problem that may impact the quality of completion of SC tasks. Based on a conceptual model and generic framework of SC task allocation, this paper first gives a review of the current state of research in this field, including single task allocation, multiple task allocation, low-cost task allocation, and quality-enhanced task allocation. We further investigate the future trends and open issues of SC task allocation, including skill-based task allocation, group recommendation and collaboration, task composition and decomposition, and privacypreserving task allocation. Finally, we discuss the practical issues on real-world deployment as well as the challenges for large-scale user study in SC task allocation.</description><subject>Crowdsourcing</subject><subject>Data quality</subject><subject>grouping and collaborating</subject><subject>Manufacturing execution systems</subject><subject>Mobile handsets</subject><subject>optimization</subject><subject>Performance evaluation</subject><subject>Resource management</subject><subject>Sensors</subject><subject>Servers</subject><subject>spatial crowdsourcing (SC)</subject><subject>task allocation</subject><subject>Task analysis</subject><subject>Vertical integration</subject><issn>2327-4662</issn><issn>2327-4662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkEFLwzAUx4MoOOY-gHgJeO5MXtI08Taq08lkh9VzSLNUOms7kxbx25uyIZ7e__D_vff4IXRNyZxSou5eVptiDoTKOUiaKglnaAIMsoQLAef_8iWahbAnhEQspUpM0GthwgdeNE1nTV93La5bvD3EaBqc--57F7rB27p9v8f54L1re7ztTe-waXd4OfSDd_ih9s6OcLhCF5Vpgpud5hS9LR-L_DlZb55W-WKdWJaqPgFnuciY4FzZqrJQZgoqIiRUGalAWS4NU2UmRFoawRk4ygznESVMlMAsm6Lb496D774GF3q9j2-28aQGkqaEskyp2KLHlvVdCN5V-uDrT-N_NCV6FKdHcXoUp0_iInNzZGrn3F9fMiokBfYL9_Bn_w</recordid><startdate>20180601</startdate><enddate>20180601</enddate><creator>Bin Guo</creator><creator>Yan Liu</creator><creator>Leye Wang</creator><creator>Li, Victor O. K.</creator><creator>Lam, Jacqueline C. K.</creator><creator>Zhiwen Yu</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-7631-3386</orcidid><orcidid>https://orcid.org/0000-0002-9905-3238</orcidid></search><sort><creationdate>20180601</creationdate><title>Task Allocation in Spatial Crowdsourcing: Current State and Future Directions</title><author>Bin Guo ; Yan Liu ; Leye Wang ; Li, Victor O. K. ; Lam, Jacqueline C. K. ; Zhiwen Yu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-2ec46736449cffc2b792f0682f70f29c48a39b7665ba6432e13a44359036b23c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Crowdsourcing</topic><topic>Data quality</topic><topic>grouping and collaborating</topic><topic>Manufacturing execution systems</topic><topic>Mobile handsets</topic><topic>optimization</topic><topic>Performance evaluation</topic><topic>Resource management</topic><topic>Sensors</topic><topic>Servers</topic><topic>spatial crowdsourcing (SC)</topic><topic>task allocation</topic><topic>Task analysis</topic><topic>Vertical integration</topic><toplevel>online_resources</toplevel><creatorcontrib>Bin Guo</creatorcontrib><creatorcontrib>Yan Liu</creatorcontrib><creatorcontrib>Leye Wang</creatorcontrib><creatorcontrib>Li, Victor O. K.</creatorcontrib><creatorcontrib>Lam, Jacqueline C. K.</creatorcontrib><creatorcontrib>Zhiwen Yu</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE internet of things journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Bin Guo</au><au>Yan Liu</au><au>Leye Wang</au><au>Li, Victor O. K.</au><au>Lam, Jacqueline C. K.</au><au>Zhiwen Yu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Task Allocation in Spatial Crowdsourcing: Current State and Future Directions</atitle><jtitle>IEEE internet of things journal</jtitle><stitle>JIoT</stitle><date>2018-06-01</date><risdate>2018</risdate><volume>5</volume><issue>3</issue><spage>1749</spage><epage>1764</epage><pages>1749-1764</pages><issn>2327-4662</issn><eissn>2327-4662</eissn><coden>IITJAU</coden><abstract>Spatial crowdsourcing (SC) is an emerging paradigm of crowdsourcing, which commits workers to move to some particular locations to perform spatio-temporal-relevant tasks (e.g., sensing and activity organization). Task allocation or worker selection is a significant problem that may impact the quality of completion of SC tasks. Based on a conceptual model and generic framework of SC task allocation, this paper first gives a review of the current state of research in this field, including single task allocation, multiple task allocation, low-cost task allocation, and quality-enhanced task allocation. We further investigate the future trends and open issues of SC task allocation, including skill-based task allocation, group recommendation and collaboration, task composition and decomposition, and privacypreserving task allocation. Finally, we discuss the practical issues on real-world deployment as well as the challenges for large-scale user study in SC task allocation.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JIOT.2018.2815982</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-7631-3386</orcidid><orcidid>https://orcid.org/0000-0002-9905-3238</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2327-4662
ispartof IEEE internet of things journal, 2018-06, Vol.5 (3), p.1749-1764
issn 2327-4662
2327-4662
language eng
recordid cdi_crossref_primary_10_1109_JIOT_2018_2815982
source IEEE Electronic Library (IEL)
subjects Crowdsourcing
Data quality
grouping and collaborating
Manufacturing execution systems
Mobile handsets
optimization
Performance evaluation
Resource management
Sensors
Servers
spatial crowdsourcing (SC)
task allocation
Task analysis
Vertical integration
title Task Allocation in Spatial Crowdsourcing: Current State and Future Directions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T21%3A30%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Task%20Allocation%20in%20Spatial%20Crowdsourcing:%20Current%20State%20and%20Future%20Directions&rft.jtitle=IEEE%20internet%20of%20things%20journal&rft.au=Bin%20Guo&rft.date=2018-06-01&rft.volume=5&rft.issue=3&rft.spage=1749&rft.epage=1764&rft.pages=1749-1764&rft.issn=2327-4662&rft.eissn=2327-4662&rft.coden=IITJAU&rft_id=info:doi/10.1109/JIOT.2018.2815982&rft_dat=%3Cproquest_RIE%3E2055013799%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2055013799&rft_id=info:pmid/&rft_ieee_id=8316812&rfr_iscdi=true