Task Allocation in Spatial Crowdsourcing: Current State and Future Directions
Spatial crowdsourcing (SC) is an emerging paradigm of crowdsourcing, which commits workers to move to some particular locations to perform spatio-temporal-relevant tasks (e.g., sensing and activity organization). Task allocation or worker selection is a significant problem that may impact the qualit...
Gespeichert in:
Veröffentlicht in: | IEEE internet of things journal 2018-06, Vol.5 (3), p.1749-1764 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1764 |
---|---|
container_issue | 3 |
container_start_page | 1749 |
container_title | IEEE internet of things journal |
container_volume | 5 |
creator | Bin Guo Yan Liu Leye Wang Li, Victor O. K. Lam, Jacqueline C. K. Zhiwen Yu |
description | Spatial crowdsourcing (SC) is an emerging paradigm of crowdsourcing, which commits workers to move to some particular locations to perform spatio-temporal-relevant tasks (e.g., sensing and activity organization). Task allocation or worker selection is a significant problem that may impact the quality of completion of SC tasks. Based on a conceptual model and generic framework of SC task allocation, this paper first gives a review of the current state of research in this field, including single task allocation, multiple task allocation, low-cost task allocation, and quality-enhanced task allocation. We further investigate the future trends and open issues of SC task allocation, including skill-based task allocation, group recommendation and collaboration, task composition and decomposition, and privacypreserving task allocation. Finally, we discuss the practical issues on real-world deployment as well as the challenges for large-scale user study in SC task allocation. |
doi_str_mv | 10.1109/JIOT.2018.2815982 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JIOT_2018_2815982</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8316812</ieee_id><sourcerecordid>2055013799</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-2ec46736449cffc2b792f0682f70f29c48a39b7665ba6432e13a44359036b23c3</originalsourceid><addsrcrecordid>eNpNkEFLwzAUx4MoOOY-gHgJeO5MXtI08Taq08lkh9VzSLNUOms7kxbx25uyIZ7e__D_vff4IXRNyZxSou5eVptiDoTKOUiaKglnaAIMsoQLAef_8iWahbAnhEQspUpM0GthwgdeNE1nTV93La5bvD3EaBqc--57F7rB27p9v8f54L1re7ztTe-waXd4OfSDd_ih9s6OcLhCF5Vpgpud5hS9LR-L_DlZb55W-WKdWJaqPgFnuciY4FzZqrJQZgoqIiRUGalAWS4NU2UmRFoawRk4ygznESVMlMAsm6Lb496D774GF3q9j2-28aQGkqaEskyp2KLHlvVdCN5V-uDrT-N_NCV6FKdHcXoUp0_iInNzZGrn3F9fMiokBfYL9_Bn_w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2055013799</pqid></control><display><type>article</type><title>Task Allocation in Spatial Crowdsourcing: Current State and Future Directions</title><source>IEEE Electronic Library (IEL)</source><creator>Bin Guo ; Yan Liu ; Leye Wang ; Li, Victor O. K. ; Lam, Jacqueline C. K. ; Zhiwen Yu</creator><creatorcontrib>Bin Guo ; Yan Liu ; Leye Wang ; Li, Victor O. K. ; Lam, Jacqueline C. K. ; Zhiwen Yu</creatorcontrib><description>Spatial crowdsourcing (SC) is an emerging paradigm of crowdsourcing, which commits workers to move to some particular locations to perform spatio-temporal-relevant tasks (e.g., sensing and activity organization). Task allocation or worker selection is a significant problem that may impact the quality of completion of SC tasks. Based on a conceptual model and generic framework of SC task allocation, this paper first gives a review of the current state of research in this field, including single task allocation, multiple task allocation, low-cost task allocation, and quality-enhanced task allocation. We further investigate the future trends and open issues of SC task allocation, including skill-based task allocation, group recommendation and collaboration, task composition and decomposition, and privacypreserving task allocation. Finally, we discuss the practical issues on real-world deployment as well as the challenges for large-scale user study in SC task allocation.</description><identifier>ISSN: 2327-4662</identifier><identifier>EISSN: 2327-4662</identifier><identifier>DOI: 10.1109/JIOT.2018.2815982</identifier><identifier>CODEN: IITJAU</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Crowdsourcing ; Data quality ; grouping and collaborating ; Manufacturing execution systems ; Mobile handsets ; optimization ; Performance evaluation ; Resource management ; Sensors ; Servers ; spatial crowdsourcing (SC) ; task allocation ; Task analysis ; Vertical integration</subject><ispartof>IEEE internet of things journal, 2018-06, Vol.5 (3), p.1749-1764</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-2ec46736449cffc2b792f0682f70f29c48a39b7665ba6432e13a44359036b23c3</citedby><cites>FETCH-LOGICAL-c359t-2ec46736449cffc2b792f0682f70f29c48a39b7665ba6432e13a44359036b23c3</cites><orcidid>0000-0001-7631-3386 ; 0000-0002-9905-3238</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8316812$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8316812$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Bin Guo</creatorcontrib><creatorcontrib>Yan Liu</creatorcontrib><creatorcontrib>Leye Wang</creatorcontrib><creatorcontrib>Li, Victor O. K.</creatorcontrib><creatorcontrib>Lam, Jacqueline C. K.</creatorcontrib><creatorcontrib>Zhiwen Yu</creatorcontrib><title>Task Allocation in Spatial Crowdsourcing: Current State and Future Directions</title><title>IEEE internet of things journal</title><addtitle>JIoT</addtitle><description>Spatial crowdsourcing (SC) is an emerging paradigm of crowdsourcing, which commits workers to move to some particular locations to perform spatio-temporal-relevant tasks (e.g., sensing and activity organization). Task allocation or worker selection is a significant problem that may impact the quality of completion of SC tasks. Based on a conceptual model and generic framework of SC task allocation, this paper first gives a review of the current state of research in this field, including single task allocation, multiple task allocation, low-cost task allocation, and quality-enhanced task allocation. We further investigate the future trends and open issues of SC task allocation, including skill-based task allocation, group recommendation and collaboration, task composition and decomposition, and privacypreserving task allocation. Finally, we discuss the practical issues on real-world deployment as well as the challenges for large-scale user study in SC task allocation.</description><subject>Crowdsourcing</subject><subject>Data quality</subject><subject>grouping and collaborating</subject><subject>Manufacturing execution systems</subject><subject>Mobile handsets</subject><subject>optimization</subject><subject>Performance evaluation</subject><subject>Resource management</subject><subject>Sensors</subject><subject>Servers</subject><subject>spatial crowdsourcing (SC)</subject><subject>task allocation</subject><subject>Task analysis</subject><subject>Vertical integration</subject><issn>2327-4662</issn><issn>2327-4662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkEFLwzAUx4MoOOY-gHgJeO5MXtI08Taq08lkh9VzSLNUOms7kxbx25uyIZ7e__D_vff4IXRNyZxSou5eVptiDoTKOUiaKglnaAIMsoQLAef_8iWahbAnhEQspUpM0GthwgdeNE1nTV93La5bvD3EaBqc--57F7rB27p9v8f54L1re7ztTe-waXd4OfSDd_ih9s6OcLhCF5Vpgpud5hS9LR-L_DlZb55W-WKdWJaqPgFnuciY4FzZqrJQZgoqIiRUGalAWS4NU2UmRFoawRk4ygznESVMlMAsm6Lb496D774GF3q9j2-28aQGkqaEskyp2KLHlvVdCN5V-uDrT-N_NCV6FKdHcXoUp0_iInNzZGrn3F9fMiokBfYL9_Bn_w</recordid><startdate>20180601</startdate><enddate>20180601</enddate><creator>Bin Guo</creator><creator>Yan Liu</creator><creator>Leye Wang</creator><creator>Li, Victor O. K.</creator><creator>Lam, Jacqueline C. K.</creator><creator>Zhiwen Yu</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-7631-3386</orcidid><orcidid>https://orcid.org/0000-0002-9905-3238</orcidid></search><sort><creationdate>20180601</creationdate><title>Task Allocation in Spatial Crowdsourcing: Current State and Future Directions</title><author>Bin Guo ; Yan Liu ; Leye Wang ; Li, Victor O. K. ; Lam, Jacqueline C. K. ; Zhiwen Yu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-2ec46736449cffc2b792f0682f70f29c48a39b7665ba6432e13a44359036b23c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Crowdsourcing</topic><topic>Data quality</topic><topic>grouping and collaborating</topic><topic>Manufacturing execution systems</topic><topic>Mobile handsets</topic><topic>optimization</topic><topic>Performance evaluation</topic><topic>Resource management</topic><topic>Sensors</topic><topic>Servers</topic><topic>spatial crowdsourcing (SC)</topic><topic>task allocation</topic><topic>Task analysis</topic><topic>Vertical integration</topic><toplevel>online_resources</toplevel><creatorcontrib>Bin Guo</creatorcontrib><creatorcontrib>Yan Liu</creatorcontrib><creatorcontrib>Leye Wang</creatorcontrib><creatorcontrib>Li, Victor O. K.</creatorcontrib><creatorcontrib>Lam, Jacqueline C. K.</creatorcontrib><creatorcontrib>Zhiwen Yu</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE internet of things journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Bin Guo</au><au>Yan Liu</au><au>Leye Wang</au><au>Li, Victor O. K.</au><au>Lam, Jacqueline C. K.</au><au>Zhiwen Yu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Task Allocation in Spatial Crowdsourcing: Current State and Future Directions</atitle><jtitle>IEEE internet of things journal</jtitle><stitle>JIoT</stitle><date>2018-06-01</date><risdate>2018</risdate><volume>5</volume><issue>3</issue><spage>1749</spage><epage>1764</epage><pages>1749-1764</pages><issn>2327-4662</issn><eissn>2327-4662</eissn><coden>IITJAU</coden><abstract>Spatial crowdsourcing (SC) is an emerging paradigm of crowdsourcing, which commits workers to move to some particular locations to perform spatio-temporal-relevant tasks (e.g., sensing and activity organization). Task allocation or worker selection is a significant problem that may impact the quality of completion of SC tasks. Based on a conceptual model and generic framework of SC task allocation, this paper first gives a review of the current state of research in this field, including single task allocation, multiple task allocation, low-cost task allocation, and quality-enhanced task allocation. We further investigate the future trends and open issues of SC task allocation, including skill-based task allocation, group recommendation and collaboration, task composition and decomposition, and privacypreserving task allocation. Finally, we discuss the practical issues on real-world deployment as well as the challenges for large-scale user study in SC task allocation.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JIOT.2018.2815982</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-7631-3386</orcidid><orcidid>https://orcid.org/0000-0002-9905-3238</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2327-4662 |
ispartof | IEEE internet of things journal, 2018-06, Vol.5 (3), p.1749-1764 |
issn | 2327-4662 2327-4662 |
language | eng |
recordid | cdi_crossref_primary_10_1109_JIOT_2018_2815982 |
source | IEEE Electronic Library (IEL) |
subjects | Crowdsourcing Data quality grouping and collaborating Manufacturing execution systems Mobile handsets optimization Performance evaluation Resource management Sensors Servers spatial crowdsourcing (SC) task allocation Task analysis Vertical integration |
title | Task Allocation in Spatial Crowdsourcing: Current State and Future Directions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T21%3A30%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Task%20Allocation%20in%20Spatial%20Crowdsourcing:%20Current%20State%20and%20Future%20Directions&rft.jtitle=IEEE%20internet%20of%20things%20journal&rft.au=Bin%20Guo&rft.date=2018-06-01&rft.volume=5&rft.issue=3&rft.spage=1749&rft.epage=1764&rft.pages=1749-1764&rft.issn=2327-4662&rft.eissn=2327-4662&rft.coden=IITJAU&rft_id=info:doi/10.1109/JIOT.2018.2815982&rft_dat=%3Cproquest_RIE%3E2055013799%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2055013799&rft_id=info:pmid/&rft_ieee_id=8316812&rfr_iscdi=true |