Energy-Latency Tradeoff for Energy-Aware Offloading in Mobile Edge Computing Networks
Mobile edge computing (MEC) brings computation capacity to the edge of mobile networks in close proximity to smart mobile devices (SMDs) and contributes to energy saving compared with local computing, but resulting in increased network load and transmission latency. To investigate the tradeoff betwe...
Gespeichert in:
Veröffentlicht in: | IEEE internet of things journal 2018-08, Vol.5 (4), p.2633-2645 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2645 |
---|---|
container_issue | 4 |
container_start_page | 2633 |
container_title | IEEE internet of things journal |
container_volume | 5 |
creator | Jiao Zhang Xiping Hu Zhaolong Ning Ngai, Edith C.-H Li Zhou Jibo Wei Jun Cheng Bin Hu |
description | Mobile edge computing (MEC) brings computation capacity to the edge of mobile networks in close proximity to smart mobile devices (SMDs) and contributes to energy saving compared with local computing, but resulting in increased network load and transmission latency. To investigate the tradeoff between energy consumption and latency, we present an energy-aware offloading scheme, which jointly optimizes communication and computation resource allocation under the limited energy and sensitive latency. In this paper, single and multicell MEC network scenarios are considered at the same time. The residual energy of smart devices' battery is introduced into the definition of the weighting factor of energy consumption and latency. In terms of the mixed integer nonlinear problem for computation offloading and resource allocation, we propose an iterative search algorithm combining interior penalty function with D.C. (the difference of two convex functions/sets) programming to find the optimal solution. Numerical results show that the proposed algorithm can obtain lower total cost (i.e., the weighted sum of energy consumption and execution latency) comparing with the baseline algorithms, and the energy-aware weighting factor is of great significance to maintain the lifetime of SMDs. |
doi_str_mv | 10.1109/JIOT.2017.2786343 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JIOT_2017_2786343</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8234573</ieee_id><sourcerecordid>2117131111</sourcerecordid><originalsourceid>FETCH-LOGICAL-c396t-9d0a57b9b05a8e52171529dc9c8b1ad1214fa91d18568e7209f0de06365299d73</originalsourceid><addsrcrecordid>eNpNkE9Lw0AQxRdRsNR-APES8Grq_kk22WOpVSvVXlqvyyY7G1LbbNwklH57N6QU5zID7_dmhofQPcFTQrB4_liuN1OKSTKlScpZxK7QiDKahBHn9PrffIsmTbPDGHtbTAQfoe2iAlecwpVqocpPwcYpDdaYwFgXnLXZUTkI1sbsrdJlVQRlFXzarNxDsNAFBHN7qLu2F76gPVr309yhG6P2DUzOfYy2r4vN_D1crd-W89kqzJngbSg0VnGSiQzHKoWYkoTEVOhc5GlGlCaUREYJokka8xQSioXBGjBn3GNCJ2yMnoa9zRHqLpO1Kw_KnaRVpXwpv2fSukJ2nWScpiz1-OOA187-dtC0cmc7V_kPJSX-OCO-PEUGKne2aRyYy1qCZZ-37POWfd7ynLf3PAyeEgAufEpZFCeM_QF1bHpq</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2117131111</pqid></control><display><type>article</type><title>Energy-Latency Tradeoff for Energy-Aware Offloading in Mobile Edge Computing Networks</title><source>IEEE Xplore</source><creator>Jiao Zhang ; Xiping Hu ; Zhaolong Ning ; Ngai, Edith C.-H ; Li Zhou ; Jibo Wei ; Jun Cheng ; Bin Hu</creator><creatorcontrib>Jiao Zhang ; Xiping Hu ; Zhaolong Ning ; Ngai, Edith C.-H ; Li Zhou ; Jibo Wei ; Jun Cheng ; Bin Hu</creatorcontrib><description>Mobile edge computing (MEC) brings computation capacity to the edge of mobile networks in close proximity to smart mobile devices (SMDs) and contributes to energy saving compared with local computing, but resulting in increased network load and transmission latency. To investigate the tradeoff between energy consumption and latency, we present an energy-aware offloading scheme, which jointly optimizes communication and computation resource allocation under the limited energy and sensitive latency. In this paper, single and multicell MEC network scenarios are considered at the same time. The residual energy of smart devices' battery is introduced into the definition of the weighting factor of energy consumption and latency. In terms of the mixed integer nonlinear problem for computation offloading and resource allocation, we propose an iterative search algorithm combining interior penalty function with D.C. (the difference of two convex functions/sets) programming to find the optimal solution. Numerical results show that the proposed algorithm can obtain lower total cost (i.e., the weighted sum of energy consumption and execution latency) comparing with the baseline algorithms, and the energy-aware weighting factor is of great significance to maintain the lifetime of SMDs.</description><identifier>ISSN: 2327-4662</identifier><identifier>EISSN: 2327-4662</identifier><identifier>DOI: 10.1109/JIOT.2017.2786343</identifier><identifier>CODEN: IITJAU</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Batteries ; Computation offloading ; Computer architecture ; Edge computing ; Electronic devices ; Energy conservation ; Energy consumption ; Energy management ; Energy transmission ; Energy-aware offloading ; Iterative methods ; Microprocessors ; Mixed integer ; Mobile computing ; mobile edge computing (MEC) ; Penalty function ; Residual energy ; Resource allocation ; Resource management ; Search algorithms ; Servers ; Tradeoffs ; Weighting ; Wireless networks</subject><ispartof>IEEE internet of things journal, 2018-08, Vol.5 (4), p.2633-2645</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c396t-9d0a57b9b05a8e52171529dc9c8b1ad1214fa91d18568e7209f0de06365299d73</citedby><cites>FETCH-LOGICAL-c396t-9d0a57b9b05a8e52171529dc9c8b1ad1214fa91d18568e7209f0de06365299d73</cites><orcidid>0000-0003-3514-5413 ; 0000-0002-7870-5524 ; 0000-0003-4099-6917 ; 0000-0003-0277-9145 ; 0000-0002-4952-699X ; 0000-0002-3454-8731 ; 0000-0002-3131-3275</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8234573$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,776,780,792,881,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8234573$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-362838$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Jiao Zhang</creatorcontrib><creatorcontrib>Xiping Hu</creatorcontrib><creatorcontrib>Zhaolong Ning</creatorcontrib><creatorcontrib>Ngai, Edith C.-H</creatorcontrib><creatorcontrib>Li Zhou</creatorcontrib><creatorcontrib>Jibo Wei</creatorcontrib><creatorcontrib>Jun Cheng</creatorcontrib><creatorcontrib>Bin Hu</creatorcontrib><title>Energy-Latency Tradeoff for Energy-Aware Offloading in Mobile Edge Computing Networks</title><title>IEEE internet of things journal</title><addtitle>JIoT</addtitle><description>Mobile edge computing (MEC) brings computation capacity to the edge of mobile networks in close proximity to smart mobile devices (SMDs) and contributes to energy saving compared with local computing, but resulting in increased network load and transmission latency. To investigate the tradeoff between energy consumption and latency, we present an energy-aware offloading scheme, which jointly optimizes communication and computation resource allocation under the limited energy and sensitive latency. In this paper, single and multicell MEC network scenarios are considered at the same time. The residual energy of smart devices' battery is introduced into the definition of the weighting factor of energy consumption and latency. In terms of the mixed integer nonlinear problem for computation offloading and resource allocation, we propose an iterative search algorithm combining interior penalty function with D.C. (the difference of two convex functions/sets) programming to find the optimal solution. Numerical results show that the proposed algorithm can obtain lower total cost (i.e., the weighted sum of energy consumption and execution latency) comparing with the baseline algorithms, and the energy-aware weighting factor is of great significance to maintain the lifetime of SMDs.</description><subject>Batteries</subject><subject>Computation offloading</subject><subject>Computer architecture</subject><subject>Edge computing</subject><subject>Electronic devices</subject><subject>Energy conservation</subject><subject>Energy consumption</subject><subject>Energy management</subject><subject>Energy transmission</subject><subject>Energy-aware offloading</subject><subject>Iterative methods</subject><subject>Microprocessors</subject><subject>Mixed integer</subject><subject>Mobile computing</subject><subject>mobile edge computing (MEC)</subject><subject>Penalty function</subject><subject>Residual energy</subject><subject>Resource allocation</subject><subject>Resource management</subject><subject>Search algorithms</subject><subject>Servers</subject><subject>Tradeoffs</subject><subject>Weighting</subject><subject>Wireless networks</subject><issn>2327-4662</issn><issn>2327-4662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE9Lw0AQxRdRsNR-APES8Grq_kk22WOpVSvVXlqvyyY7G1LbbNwklH57N6QU5zID7_dmhofQPcFTQrB4_liuN1OKSTKlScpZxK7QiDKahBHn9PrffIsmTbPDGHtbTAQfoe2iAlecwpVqocpPwcYpDdaYwFgXnLXZUTkI1sbsrdJlVQRlFXzarNxDsNAFBHN7qLu2F76gPVr309yhG6P2DUzOfYy2r4vN_D1crd-W89kqzJngbSg0VnGSiQzHKoWYkoTEVOhc5GlGlCaUREYJokka8xQSioXBGjBn3GNCJ2yMnoa9zRHqLpO1Kw_KnaRVpXwpv2fSukJ2nWScpiz1-OOA187-dtC0cmc7V_kPJSX-OCO-PEUGKne2aRyYy1qCZZ-37POWfd7ynLf3PAyeEgAufEpZFCeM_QF1bHpq</recordid><startdate>20180801</startdate><enddate>20180801</enddate><creator>Jiao Zhang</creator><creator>Xiping Hu</creator><creator>Zhaolong Ning</creator><creator>Ngai, Edith C.-H</creator><creator>Li Zhou</creator><creator>Jibo Wei</creator><creator>Jun Cheng</creator><creator>Bin Hu</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>DF2</scope><orcidid>https://orcid.org/0000-0003-3514-5413</orcidid><orcidid>https://orcid.org/0000-0002-7870-5524</orcidid><orcidid>https://orcid.org/0000-0003-4099-6917</orcidid><orcidid>https://orcid.org/0000-0003-0277-9145</orcidid><orcidid>https://orcid.org/0000-0002-4952-699X</orcidid><orcidid>https://orcid.org/0000-0002-3454-8731</orcidid><orcidid>https://orcid.org/0000-0002-3131-3275</orcidid></search><sort><creationdate>20180801</creationdate><title>Energy-Latency Tradeoff for Energy-Aware Offloading in Mobile Edge Computing Networks</title><author>Jiao Zhang ; Xiping Hu ; Zhaolong Ning ; Ngai, Edith C.-H ; Li Zhou ; Jibo Wei ; Jun Cheng ; Bin Hu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c396t-9d0a57b9b05a8e52171529dc9c8b1ad1214fa91d18568e7209f0de06365299d73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Batteries</topic><topic>Computation offloading</topic><topic>Computer architecture</topic><topic>Edge computing</topic><topic>Electronic devices</topic><topic>Energy conservation</topic><topic>Energy consumption</topic><topic>Energy management</topic><topic>Energy transmission</topic><topic>Energy-aware offloading</topic><topic>Iterative methods</topic><topic>Microprocessors</topic><topic>Mixed integer</topic><topic>Mobile computing</topic><topic>mobile edge computing (MEC)</topic><topic>Penalty function</topic><topic>Residual energy</topic><topic>Resource allocation</topic><topic>Resource management</topic><topic>Search algorithms</topic><topic>Servers</topic><topic>Tradeoffs</topic><topic>Weighting</topic><topic>Wireless networks</topic><toplevel>online_resources</toplevel><creatorcontrib>Jiao Zhang</creatorcontrib><creatorcontrib>Xiping Hu</creatorcontrib><creatorcontrib>Zhaolong Ning</creatorcontrib><creatorcontrib>Ngai, Edith C.-H</creatorcontrib><creatorcontrib>Li Zhou</creatorcontrib><creatorcontrib>Jibo Wei</creatorcontrib><creatorcontrib>Jun Cheng</creatorcontrib><creatorcontrib>Bin Hu</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Uppsala universitet</collection><jtitle>IEEE internet of things journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jiao Zhang</au><au>Xiping Hu</au><au>Zhaolong Ning</au><au>Ngai, Edith C.-H</au><au>Li Zhou</au><au>Jibo Wei</au><au>Jun Cheng</au><au>Bin Hu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Energy-Latency Tradeoff for Energy-Aware Offloading in Mobile Edge Computing Networks</atitle><jtitle>IEEE internet of things journal</jtitle><stitle>JIoT</stitle><date>2018-08-01</date><risdate>2018</risdate><volume>5</volume><issue>4</issue><spage>2633</spage><epage>2645</epage><pages>2633-2645</pages><issn>2327-4662</issn><eissn>2327-4662</eissn><coden>IITJAU</coden><abstract>Mobile edge computing (MEC) brings computation capacity to the edge of mobile networks in close proximity to smart mobile devices (SMDs) and contributes to energy saving compared with local computing, but resulting in increased network load and transmission latency. To investigate the tradeoff between energy consumption and latency, we present an energy-aware offloading scheme, which jointly optimizes communication and computation resource allocation under the limited energy and sensitive latency. In this paper, single and multicell MEC network scenarios are considered at the same time. The residual energy of smart devices' battery is introduced into the definition of the weighting factor of energy consumption and latency. In terms of the mixed integer nonlinear problem for computation offloading and resource allocation, we propose an iterative search algorithm combining interior penalty function with D.C. (the difference of two convex functions/sets) programming to find the optimal solution. Numerical results show that the proposed algorithm can obtain lower total cost (i.e., the weighted sum of energy consumption and execution latency) comparing with the baseline algorithms, and the energy-aware weighting factor is of great significance to maintain the lifetime of SMDs.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JIOT.2017.2786343</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-3514-5413</orcidid><orcidid>https://orcid.org/0000-0002-7870-5524</orcidid><orcidid>https://orcid.org/0000-0003-4099-6917</orcidid><orcidid>https://orcid.org/0000-0003-0277-9145</orcidid><orcidid>https://orcid.org/0000-0002-4952-699X</orcidid><orcidid>https://orcid.org/0000-0002-3454-8731</orcidid><orcidid>https://orcid.org/0000-0002-3131-3275</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2327-4662 |
ispartof | IEEE internet of things journal, 2018-08, Vol.5 (4), p.2633-2645 |
issn | 2327-4662 2327-4662 |
language | eng |
recordid | cdi_crossref_primary_10_1109_JIOT_2017_2786343 |
source | IEEE Xplore |
subjects | Batteries Computation offloading Computer architecture Edge computing Electronic devices Energy conservation Energy consumption Energy management Energy transmission Energy-aware offloading Iterative methods Microprocessors Mixed integer Mobile computing mobile edge computing (MEC) Penalty function Residual energy Resource allocation Resource management Search algorithms Servers Tradeoffs Weighting Wireless networks |
title | Energy-Latency Tradeoff for Energy-Aware Offloading in Mobile Edge Computing Networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T02%3A49%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Energy-Latency%20Tradeoff%20for%20Energy-Aware%20Offloading%20in%20Mobile%20Edge%20Computing%20Networks&rft.jtitle=IEEE%20internet%20of%20things%20journal&rft.au=Jiao%20Zhang&rft.date=2018-08-01&rft.volume=5&rft.issue=4&rft.spage=2633&rft.epage=2645&rft.pages=2633-2645&rft.issn=2327-4662&rft.eissn=2327-4662&rft.coden=IITJAU&rft_id=info:doi/10.1109/JIOT.2017.2786343&rft_dat=%3Cproquest_RIE%3E2117131111%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2117131111&rft_id=info:pmid/&rft_ieee_id=8234573&rfr_iscdi=true |