Energy-Latency Tradeoff for Energy-Aware Offloading in Mobile Edge Computing Networks

Mobile edge computing (MEC) brings computation capacity to the edge of mobile networks in close proximity to smart mobile devices (SMDs) and contributes to energy saving compared with local computing, but resulting in increased network load and transmission latency. To investigate the tradeoff betwe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE internet of things journal 2018-08, Vol.5 (4), p.2633-2645
Hauptverfasser: Jiao Zhang, Xiping Hu, Zhaolong Ning, Ngai, Edith C.-H, Li Zhou, Jibo Wei, Jun Cheng, Bin Hu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2645
container_issue 4
container_start_page 2633
container_title IEEE internet of things journal
container_volume 5
creator Jiao Zhang
Xiping Hu
Zhaolong Ning
Ngai, Edith C.-H
Li Zhou
Jibo Wei
Jun Cheng
Bin Hu
description Mobile edge computing (MEC) brings computation capacity to the edge of mobile networks in close proximity to smart mobile devices (SMDs) and contributes to energy saving compared with local computing, but resulting in increased network load and transmission latency. To investigate the tradeoff between energy consumption and latency, we present an energy-aware offloading scheme, which jointly optimizes communication and computation resource allocation under the limited energy and sensitive latency. In this paper, single and multicell MEC network scenarios are considered at the same time. The residual energy of smart devices' battery is introduced into the definition of the weighting factor of energy consumption and latency. In terms of the mixed integer nonlinear problem for computation offloading and resource allocation, we propose an iterative search algorithm combining interior penalty function with D.C. (the difference of two convex functions/sets) programming to find the optimal solution. Numerical results show that the proposed algorithm can obtain lower total cost (i.e., the weighted sum of energy consumption and execution latency) comparing with the baseline algorithms, and the energy-aware weighting factor is of great significance to maintain the lifetime of SMDs.
doi_str_mv 10.1109/JIOT.2017.2786343
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JIOT_2017_2786343</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8234573</ieee_id><sourcerecordid>2117131111</sourcerecordid><originalsourceid>FETCH-LOGICAL-c396t-9d0a57b9b05a8e52171529dc9c8b1ad1214fa91d18568e7209f0de06365299d73</originalsourceid><addsrcrecordid>eNpNkE9Lw0AQxRdRsNR-APES8Grq_kk22WOpVSvVXlqvyyY7G1LbbNwklH57N6QU5zID7_dmhofQPcFTQrB4_liuN1OKSTKlScpZxK7QiDKahBHn9PrffIsmTbPDGHtbTAQfoe2iAlecwpVqocpPwcYpDdaYwFgXnLXZUTkI1sbsrdJlVQRlFXzarNxDsNAFBHN7qLu2F76gPVr309yhG6P2DUzOfYy2r4vN_D1crd-W89kqzJngbSg0VnGSiQzHKoWYkoTEVOhc5GlGlCaUREYJokka8xQSioXBGjBn3GNCJ2yMnoa9zRHqLpO1Kw_KnaRVpXwpv2fSukJ2nWScpiz1-OOA187-dtC0cmc7V_kPJSX-OCO-PEUGKne2aRyYy1qCZZ-37POWfd7ynLf3PAyeEgAufEpZFCeM_QF1bHpq</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2117131111</pqid></control><display><type>article</type><title>Energy-Latency Tradeoff for Energy-Aware Offloading in Mobile Edge Computing Networks</title><source>IEEE Xplore</source><creator>Jiao Zhang ; Xiping Hu ; Zhaolong Ning ; Ngai, Edith C.-H ; Li Zhou ; Jibo Wei ; Jun Cheng ; Bin Hu</creator><creatorcontrib>Jiao Zhang ; Xiping Hu ; Zhaolong Ning ; Ngai, Edith C.-H ; Li Zhou ; Jibo Wei ; Jun Cheng ; Bin Hu</creatorcontrib><description>Mobile edge computing (MEC) brings computation capacity to the edge of mobile networks in close proximity to smart mobile devices (SMDs) and contributes to energy saving compared with local computing, but resulting in increased network load and transmission latency. To investigate the tradeoff between energy consumption and latency, we present an energy-aware offloading scheme, which jointly optimizes communication and computation resource allocation under the limited energy and sensitive latency. In this paper, single and multicell MEC network scenarios are considered at the same time. The residual energy of smart devices' battery is introduced into the definition of the weighting factor of energy consumption and latency. In terms of the mixed integer nonlinear problem for computation offloading and resource allocation, we propose an iterative search algorithm combining interior penalty function with D.C. (the difference of two convex functions/sets) programming to find the optimal solution. Numerical results show that the proposed algorithm can obtain lower total cost (i.e., the weighted sum of energy consumption and execution latency) comparing with the baseline algorithms, and the energy-aware weighting factor is of great significance to maintain the lifetime of SMDs.</description><identifier>ISSN: 2327-4662</identifier><identifier>EISSN: 2327-4662</identifier><identifier>DOI: 10.1109/JIOT.2017.2786343</identifier><identifier>CODEN: IITJAU</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Batteries ; Computation offloading ; Computer architecture ; Edge computing ; Electronic devices ; Energy conservation ; Energy consumption ; Energy management ; Energy transmission ; Energy-aware offloading ; Iterative methods ; Microprocessors ; Mixed integer ; Mobile computing ; mobile edge computing (MEC) ; Penalty function ; Residual energy ; Resource allocation ; Resource management ; Search algorithms ; Servers ; Tradeoffs ; Weighting ; Wireless networks</subject><ispartof>IEEE internet of things journal, 2018-08, Vol.5 (4), p.2633-2645</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c396t-9d0a57b9b05a8e52171529dc9c8b1ad1214fa91d18568e7209f0de06365299d73</citedby><cites>FETCH-LOGICAL-c396t-9d0a57b9b05a8e52171529dc9c8b1ad1214fa91d18568e7209f0de06365299d73</cites><orcidid>0000-0003-3514-5413 ; 0000-0002-7870-5524 ; 0000-0003-4099-6917 ; 0000-0003-0277-9145 ; 0000-0002-4952-699X ; 0000-0002-3454-8731 ; 0000-0002-3131-3275</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8234573$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,776,780,792,881,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8234573$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-362838$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Jiao Zhang</creatorcontrib><creatorcontrib>Xiping Hu</creatorcontrib><creatorcontrib>Zhaolong Ning</creatorcontrib><creatorcontrib>Ngai, Edith C.-H</creatorcontrib><creatorcontrib>Li Zhou</creatorcontrib><creatorcontrib>Jibo Wei</creatorcontrib><creatorcontrib>Jun Cheng</creatorcontrib><creatorcontrib>Bin Hu</creatorcontrib><title>Energy-Latency Tradeoff for Energy-Aware Offloading in Mobile Edge Computing Networks</title><title>IEEE internet of things journal</title><addtitle>JIoT</addtitle><description>Mobile edge computing (MEC) brings computation capacity to the edge of mobile networks in close proximity to smart mobile devices (SMDs) and contributes to energy saving compared with local computing, but resulting in increased network load and transmission latency. To investigate the tradeoff between energy consumption and latency, we present an energy-aware offloading scheme, which jointly optimizes communication and computation resource allocation under the limited energy and sensitive latency. In this paper, single and multicell MEC network scenarios are considered at the same time. The residual energy of smart devices' battery is introduced into the definition of the weighting factor of energy consumption and latency. In terms of the mixed integer nonlinear problem for computation offloading and resource allocation, we propose an iterative search algorithm combining interior penalty function with D.C. (the difference of two convex functions/sets) programming to find the optimal solution. Numerical results show that the proposed algorithm can obtain lower total cost (i.e., the weighted sum of energy consumption and execution latency) comparing with the baseline algorithms, and the energy-aware weighting factor is of great significance to maintain the lifetime of SMDs.</description><subject>Batteries</subject><subject>Computation offloading</subject><subject>Computer architecture</subject><subject>Edge computing</subject><subject>Electronic devices</subject><subject>Energy conservation</subject><subject>Energy consumption</subject><subject>Energy management</subject><subject>Energy transmission</subject><subject>Energy-aware offloading</subject><subject>Iterative methods</subject><subject>Microprocessors</subject><subject>Mixed integer</subject><subject>Mobile computing</subject><subject>mobile edge computing (MEC)</subject><subject>Penalty function</subject><subject>Residual energy</subject><subject>Resource allocation</subject><subject>Resource management</subject><subject>Search algorithms</subject><subject>Servers</subject><subject>Tradeoffs</subject><subject>Weighting</subject><subject>Wireless networks</subject><issn>2327-4662</issn><issn>2327-4662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE9Lw0AQxRdRsNR-APES8Grq_kk22WOpVSvVXlqvyyY7G1LbbNwklH57N6QU5zID7_dmhofQPcFTQrB4_liuN1OKSTKlScpZxK7QiDKahBHn9PrffIsmTbPDGHtbTAQfoe2iAlecwpVqocpPwcYpDdaYwFgXnLXZUTkI1sbsrdJlVQRlFXzarNxDsNAFBHN7qLu2F76gPVr309yhG6P2DUzOfYy2r4vN_D1crd-W89kqzJngbSg0VnGSiQzHKoWYkoTEVOhc5GlGlCaUREYJokka8xQSioXBGjBn3GNCJ2yMnoa9zRHqLpO1Kw_KnaRVpXwpv2fSukJ2nWScpiz1-OOA187-dtC0cmc7V_kPJSX-OCO-PEUGKne2aRyYy1qCZZ-37POWfd7ynLf3PAyeEgAufEpZFCeM_QF1bHpq</recordid><startdate>20180801</startdate><enddate>20180801</enddate><creator>Jiao Zhang</creator><creator>Xiping Hu</creator><creator>Zhaolong Ning</creator><creator>Ngai, Edith C.-H</creator><creator>Li Zhou</creator><creator>Jibo Wei</creator><creator>Jun Cheng</creator><creator>Bin Hu</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>DF2</scope><orcidid>https://orcid.org/0000-0003-3514-5413</orcidid><orcidid>https://orcid.org/0000-0002-7870-5524</orcidid><orcidid>https://orcid.org/0000-0003-4099-6917</orcidid><orcidid>https://orcid.org/0000-0003-0277-9145</orcidid><orcidid>https://orcid.org/0000-0002-4952-699X</orcidid><orcidid>https://orcid.org/0000-0002-3454-8731</orcidid><orcidid>https://orcid.org/0000-0002-3131-3275</orcidid></search><sort><creationdate>20180801</creationdate><title>Energy-Latency Tradeoff for Energy-Aware Offloading in Mobile Edge Computing Networks</title><author>Jiao Zhang ; Xiping Hu ; Zhaolong Ning ; Ngai, Edith C.-H ; Li Zhou ; Jibo Wei ; Jun Cheng ; Bin Hu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c396t-9d0a57b9b05a8e52171529dc9c8b1ad1214fa91d18568e7209f0de06365299d73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Batteries</topic><topic>Computation offloading</topic><topic>Computer architecture</topic><topic>Edge computing</topic><topic>Electronic devices</topic><topic>Energy conservation</topic><topic>Energy consumption</topic><topic>Energy management</topic><topic>Energy transmission</topic><topic>Energy-aware offloading</topic><topic>Iterative methods</topic><topic>Microprocessors</topic><topic>Mixed integer</topic><topic>Mobile computing</topic><topic>mobile edge computing (MEC)</topic><topic>Penalty function</topic><topic>Residual energy</topic><topic>Resource allocation</topic><topic>Resource management</topic><topic>Search algorithms</topic><topic>Servers</topic><topic>Tradeoffs</topic><topic>Weighting</topic><topic>Wireless networks</topic><toplevel>online_resources</toplevel><creatorcontrib>Jiao Zhang</creatorcontrib><creatorcontrib>Xiping Hu</creatorcontrib><creatorcontrib>Zhaolong Ning</creatorcontrib><creatorcontrib>Ngai, Edith C.-H</creatorcontrib><creatorcontrib>Li Zhou</creatorcontrib><creatorcontrib>Jibo Wei</creatorcontrib><creatorcontrib>Jun Cheng</creatorcontrib><creatorcontrib>Bin Hu</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Uppsala universitet</collection><jtitle>IEEE internet of things journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jiao Zhang</au><au>Xiping Hu</au><au>Zhaolong Ning</au><au>Ngai, Edith C.-H</au><au>Li Zhou</au><au>Jibo Wei</au><au>Jun Cheng</au><au>Bin Hu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Energy-Latency Tradeoff for Energy-Aware Offloading in Mobile Edge Computing Networks</atitle><jtitle>IEEE internet of things journal</jtitle><stitle>JIoT</stitle><date>2018-08-01</date><risdate>2018</risdate><volume>5</volume><issue>4</issue><spage>2633</spage><epage>2645</epage><pages>2633-2645</pages><issn>2327-4662</issn><eissn>2327-4662</eissn><coden>IITJAU</coden><abstract>Mobile edge computing (MEC) brings computation capacity to the edge of mobile networks in close proximity to smart mobile devices (SMDs) and contributes to energy saving compared with local computing, but resulting in increased network load and transmission latency. To investigate the tradeoff between energy consumption and latency, we present an energy-aware offloading scheme, which jointly optimizes communication and computation resource allocation under the limited energy and sensitive latency. In this paper, single and multicell MEC network scenarios are considered at the same time. The residual energy of smart devices' battery is introduced into the definition of the weighting factor of energy consumption and latency. In terms of the mixed integer nonlinear problem for computation offloading and resource allocation, we propose an iterative search algorithm combining interior penalty function with D.C. (the difference of two convex functions/sets) programming to find the optimal solution. Numerical results show that the proposed algorithm can obtain lower total cost (i.e., the weighted sum of energy consumption and execution latency) comparing with the baseline algorithms, and the energy-aware weighting factor is of great significance to maintain the lifetime of SMDs.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JIOT.2017.2786343</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-3514-5413</orcidid><orcidid>https://orcid.org/0000-0002-7870-5524</orcidid><orcidid>https://orcid.org/0000-0003-4099-6917</orcidid><orcidid>https://orcid.org/0000-0003-0277-9145</orcidid><orcidid>https://orcid.org/0000-0002-4952-699X</orcidid><orcidid>https://orcid.org/0000-0002-3454-8731</orcidid><orcidid>https://orcid.org/0000-0002-3131-3275</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2327-4662
ispartof IEEE internet of things journal, 2018-08, Vol.5 (4), p.2633-2645
issn 2327-4662
2327-4662
language eng
recordid cdi_crossref_primary_10_1109_JIOT_2017_2786343
source IEEE Xplore
subjects Batteries
Computation offloading
Computer architecture
Edge computing
Electronic devices
Energy conservation
Energy consumption
Energy management
Energy transmission
Energy-aware offloading
Iterative methods
Microprocessors
Mixed integer
Mobile computing
mobile edge computing (MEC)
Penalty function
Residual energy
Resource allocation
Resource management
Search algorithms
Servers
Tradeoffs
Weighting
Wireless networks
title Energy-Latency Tradeoff for Energy-Aware Offloading in Mobile Edge Computing Networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T02%3A49%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Energy-Latency%20Tradeoff%20for%20Energy-Aware%20Offloading%20in%20Mobile%20Edge%20Computing%20Networks&rft.jtitle=IEEE%20internet%20of%20things%20journal&rft.au=Jiao%20Zhang&rft.date=2018-08-01&rft.volume=5&rft.issue=4&rft.spage=2633&rft.epage=2645&rft.pages=2633-2645&rft.issn=2327-4662&rft.eissn=2327-4662&rft.coden=IITJAU&rft_id=info:doi/10.1109/JIOT.2017.2786343&rft_dat=%3Cproquest_RIE%3E2117131111%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2117131111&rft_id=info:pmid/&rft_ieee_id=8234573&rfr_iscdi=true