Adaptive Result Inference for Collecting Quantitative Data With Crowdsourcing

In quantitative crowdsourcing, workers are asked to provide numerical answers. Different from categorical crowdsourcing, result aggregation in quantitative crowdsourcing is processed by combinatorially computing over all workers' answers instead of by merely choosing one from a set of candidate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE internet of things journal 2017-10, Vol.4 (5), p.1389-1398
Hauptverfasser: Sun, Hailong, Hu, Kefan, Fang, Yili, Song, Yangqiu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1398
container_issue 5
container_start_page 1389
container_title IEEE internet of things journal
container_volume 4
creator Sun, Hailong
Hu, Kefan
Fang, Yili
Song, Yangqiu
description In quantitative crowdsourcing, workers are asked to provide numerical answers. Different from categorical crowdsourcing, result aggregation in quantitative crowdsourcing is processed by combinatorially computing over all workers' answers instead of by merely choosing one from a set of candidate answers. Therefore, existing result aggregation models for categorical crowdsourcing tasks cannot be used in quantitative crowdsourcing. Moreover, the worker ability often varies in the process of crowdsourcing with the changing of workers' skill, willingness, efforts, etc. In this paper, we propose a probabilistic model to characterize the quantitative crowdsourcing problem by considering the changing of worker ability so as to achieve better quality control. The dynamic worker ability is obtained with Kalman filtering and smoother. We design an expectationmaximization-based inference algorithm and a dynamic worker filtering algorithm to compute the aggregated crowdsourcing result. Finally, we conducted experiments with real data on CrowdFlower and the results showed that our approach can effectively rule out low-quality workers dynamically and obtain more accurate results with less costs.
doi_str_mv 10.1109/JIOT.2017.2673958
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JIOT_2017_2673958</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7862852</ieee_id><sourcerecordid>10_1109_JIOT_2017_2673958</sourcerecordid><originalsourceid>FETCH-LOGICAL-c265t-68f45b27eff84d5f178394503ba0c5f5e56960acac3d438ad1965696a85b060e3</originalsourceid><addsrcrecordid>eNpNkF1LwzAUhoMoOOZ-gHiTP9CZjyZNL0f9qkyGMvEypOmJVmo7klTx39u6IV6dl8PzHg4PQueULCkl-eV9udkuGaHZksmM50IdoRnjLEtSKdnxv3yKFiG8E0LGmqC5nKGHVW12sfkE_ARhaCMuOwceOgvY9R4XfduCjU33ih8H08Umml_4ykSDX5r4hgvff9WhH7wdoTN04kwbYHGYc_R8c70t7pL15rYsVuvEMiliIpVLRcUycE6ltXA0UzxPBeGVIVY4AULmkhhrLK9Trkw9vjqtjBIVkQT4HNH9Xev7EDw4vfPNh_HfmhI9KdGTEj0p0QclY-di32kA4I_PlGRKMP4DwbFdVA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Adaptive Result Inference for Collecting Quantitative Data With Crowdsourcing</title><source>IEEE/IET Electronic Library (IEL)</source><creator>Sun, Hailong ; Hu, Kefan ; Fang, Yili ; Song, Yangqiu</creator><creatorcontrib>Sun, Hailong ; Hu, Kefan ; Fang, Yili ; Song, Yangqiu</creatorcontrib><description>In quantitative crowdsourcing, workers are asked to provide numerical answers. Different from categorical crowdsourcing, result aggregation in quantitative crowdsourcing is processed by combinatorially computing over all workers' answers instead of by merely choosing one from a set of candidate answers. Therefore, existing result aggregation models for categorical crowdsourcing tasks cannot be used in quantitative crowdsourcing. Moreover, the worker ability often varies in the process of crowdsourcing with the changing of workers' skill, willingness, efforts, etc. In this paper, we propose a probabilistic model to characterize the quantitative crowdsourcing problem by considering the changing of worker ability so as to achieve better quality control. The dynamic worker ability is obtained with Kalman filtering and smoother. We design an expectationmaximization-based inference algorithm and a dynamic worker filtering algorithm to compute the aggregated crowdsourcing result. Finally, we conducted experiments with real data on CrowdFlower and the results showed that our approach can effectively rule out low-quality workers dynamically and obtain more accurate results with less costs.</description><identifier>ISSN: 2327-4662</identifier><identifier>EISSN: 2327-4662</identifier><identifier>DOI: 10.1109/JIOT.2017.2673958</identifier><identifier>CODEN: IITJAU</identifier><language>eng</language><publisher>IEEE</publisher><subject>Adaptation models ; Algorithm design and analysis ; Computational modeling ; Crowdsensing ; Crowdsourcing ; Heuristic algorithms ; Inference algorithms ; Kalman filters ; quality control ; quantitative crowdsourcing ; result inference</subject><ispartof>IEEE internet of things journal, 2017-10, Vol.4 (5), p.1389-1398</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c265t-68f45b27eff84d5f178394503ba0c5f5e56960acac3d438ad1965696a85b060e3</citedby><cites>FETCH-LOGICAL-c265t-68f45b27eff84d5f178394503ba0c5f5e56960acac3d438ad1965696a85b060e3</cites><orcidid>0000-0001-7654-5574</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7862852$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,782,786,798,27933,27934,54767</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7862852$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Sun, Hailong</creatorcontrib><creatorcontrib>Hu, Kefan</creatorcontrib><creatorcontrib>Fang, Yili</creatorcontrib><creatorcontrib>Song, Yangqiu</creatorcontrib><title>Adaptive Result Inference for Collecting Quantitative Data With Crowdsourcing</title><title>IEEE internet of things journal</title><addtitle>JIoT</addtitle><description>In quantitative crowdsourcing, workers are asked to provide numerical answers. Different from categorical crowdsourcing, result aggregation in quantitative crowdsourcing is processed by combinatorially computing over all workers' answers instead of by merely choosing one from a set of candidate answers. Therefore, existing result aggregation models for categorical crowdsourcing tasks cannot be used in quantitative crowdsourcing. Moreover, the worker ability often varies in the process of crowdsourcing with the changing of workers' skill, willingness, efforts, etc. In this paper, we propose a probabilistic model to characterize the quantitative crowdsourcing problem by considering the changing of worker ability so as to achieve better quality control. The dynamic worker ability is obtained with Kalman filtering and smoother. We design an expectationmaximization-based inference algorithm and a dynamic worker filtering algorithm to compute the aggregated crowdsourcing result. Finally, we conducted experiments with real data on CrowdFlower and the results showed that our approach can effectively rule out low-quality workers dynamically and obtain more accurate results with less costs.</description><subject>Adaptation models</subject><subject>Algorithm design and analysis</subject><subject>Computational modeling</subject><subject>Crowdsensing</subject><subject>Crowdsourcing</subject><subject>Heuristic algorithms</subject><subject>Inference algorithms</subject><subject>Kalman filters</subject><subject>quality control</subject><subject>quantitative crowdsourcing</subject><subject>result inference</subject><issn>2327-4662</issn><issn>2327-4662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkF1LwzAUhoMoOOZ-gHiTP9CZjyZNL0f9qkyGMvEypOmJVmo7klTx39u6IV6dl8PzHg4PQueULCkl-eV9udkuGaHZksmM50IdoRnjLEtSKdnxv3yKFiG8E0LGmqC5nKGHVW12sfkE_ARhaCMuOwceOgvY9R4XfduCjU33ih8H08Umml_4ykSDX5r4hgvff9WhH7wdoTN04kwbYHGYc_R8c70t7pL15rYsVuvEMiliIpVLRcUycE6ltXA0UzxPBeGVIVY4AULmkhhrLK9Trkw9vjqtjBIVkQT4HNH9Xev7EDw4vfPNh_HfmhI9KdGTEj0p0QclY-di32kA4I_PlGRKMP4DwbFdVA</recordid><startdate>201710</startdate><enddate>201710</enddate><creator>Sun, Hailong</creator><creator>Hu, Kefan</creator><creator>Fang, Yili</creator><creator>Song, Yangqiu</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-7654-5574</orcidid></search><sort><creationdate>201710</creationdate><title>Adaptive Result Inference for Collecting Quantitative Data With Crowdsourcing</title><author>Sun, Hailong ; Hu, Kefan ; Fang, Yili ; Song, Yangqiu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c265t-68f45b27eff84d5f178394503ba0c5f5e56960acac3d438ad1965696a85b060e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Adaptation models</topic><topic>Algorithm design and analysis</topic><topic>Computational modeling</topic><topic>Crowdsensing</topic><topic>Crowdsourcing</topic><topic>Heuristic algorithms</topic><topic>Inference algorithms</topic><topic>Kalman filters</topic><topic>quality control</topic><topic>quantitative crowdsourcing</topic><topic>result inference</topic><toplevel>online_resources</toplevel><creatorcontrib>Sun, Hailong</creatorcontrib><creatorcontrib>Hu, Kefan</creatorcontrib><creatorcontrib>Fang, Yili</creatorcontrib><creatorcontrib>Song, Yangqiu</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE internet of things journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sun, Hailong</au><au>Hu, Kefan</au><au>Fang, Yili</au><au>Song, Yangqiu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptive Result Inference for Collecting Quantitative Data With Crowdsourcing</atitle><jtitle>IEEE internet of things journal</jtitle><stitle>JIoT</stitle><date>2017-10</date><risdate>2017</risdate><volume>4</volume><issue>5</issue><spage>1389</spage><epage>1398</epage><pages>1389-1398</pages><issn>2327-4662</issn><eissn>2327-4662</eissn><coden>IITJAU</coden><abstract>In quantitative crowdsourcing, workers are asked to provide numerical answers. Different from categorical crowdsourcing, result aggregation in quantitative crowdsourcing is processed by combinatorially computing over all workers' answers instead of by merely choosing one from a set of candidate answers. Therefore, existing result aggregation models for categorical crowdsourcing tasks cannot be used in quantitative crowdsourcing. Moreover, the worker ability often varies in the process of crowdsourcing with the changing of workers' skill, willingness, efforts, etc. In this paper, we propose a probabilistic model to characterize the quantitative crowdsourcing problem by considering the changing of worker ability so as to achieve better quality control. The dynamic worker ability is obtained with Kalman filtering and smoother. We design an expectationmaximization-based inference algorithm and a dynamic worker filtering algorithm to compute the aggregated crowdsourcing result. Finally, we conducted experiments with real data on CrowdFlower and the results showed that our approach can effectively rule out low-quality workers dynamically and obtain more accurate results with less costs.</abstract><pub>IEEE</pub><doi>10.1109/JIOT.2017.2673958</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-7654-5574</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2327-4662
ispartof IEEE internet of things journal, 2017-10, Vol.4 (5), p.1389-1398
issn 2327-4662
2327-4662
language eng
recordid cdi_crossref_primary_10_1109_JIOT_2017_2673958
source IEEE/IET Electronic Library (IEL)
subjects Adaptation models
Algorithm design and analysis
Computational modeling
Crowdsensing
Crowdsourcing
Heuristic algorithms
Inference algorithms
Kalman filters
quality control
quantitative crowdsourcing
result inference
title Adaptive Result Inference for Collecting Quantitative Data With Crowdsourcing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-03T14%3A51%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptive%20Result%20Inference%20for%20Collecting%20Quantitative%20Data%20With%20Crowdsourcing&rft.jtitle=IEEE%20internet%20of%20things%20journal&rft.au=Sun,%20Hailong&rft.date=2017-10&rft.volume=4&rft.issue=5&rft.spage=1389&rft.epage=1398&rft.pages=1389-1398&rft.issn=2327-4662&rft.eissn=2327-4662&rft.coden=IITJAU&rft_id=info:doi/10.1109/JIOT.2017.2673958&rft_dat=%3Ccrossref_RIE%3E10_1109_JIOT_2017_2673958%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=7862852&rfr_iscdi=true