Adaptive Result Inference for Collecting Quantitative Data With Crowdsourcing
In quantitative crowdsourcing, workers are asked to provide numerical answers. Different from categorical crowdsourcing, result aggregation in quantitative crowdsourcing is processed by combinatorially computing over all workers' answers instead of by merely choosing one from a set of candidate...
Gespeichert in:
Veröffentlicht in: | IEEE internet of things journal 2017-10, Vol.4 (5), p.1389-1398 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1398 |
---|---|
container_issue | 5 |
container_start_page | 1389 |
container_title | IEEE internet of things journal |
container_volume | 4 |
creator | Sun, Hailong Hu, Kefan Fang, Yili Song, Yangqiu |
description | In quantitative crowdsourcing, workers are asked to provide numerical answers. Different from categorical crowdsourcing, result aggregation in quantitative crowdsourcing is processed by combinatorially computing over all workers' answers instead of by merely choosing one from a set of candidate answers. Therefore, existing result aggregation models for categorical crowdsourcing tasks cannot be used in quantitative crowdsourcing. Moreover, the worker ability often varies in the process of crowdsourcing with the changing of workers' skill, willingness, efforts, etc. In this paper, we propose a probabilistic model to characterize the quantitative crowdsourcing problem by considering the changing of worker ability so as to achieve better quality control. The dynamic worker ability is obtained with Kalman filtering and smoother. We design an expectationmaximization-based inference algorithm and a dynamic worker filtering algorithm to compute the aggregated crowdsourcing result. Finally, we conducted experiments with real data on CrowdFlower and the results showed that our approach can effectively rule out low-quality workers dynamically and obtain more accurate results with less costs. |
doi_str_mv | 10.1109/JIOT.2017.2673958 |
format | Article |
fullrecord | <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JIOT_2017_2673958</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7862852</ieee_id><sourcerecordid>10_1109_JIOT_2017_2673958</sourcerecordid><originalsourceid>FETCH-LOGICAL-c265t-68f45b27eff84d5f178394503ba0c5f5e56960acac3d438ad1965696a85b060e3</originalsourceid><addsrcrecordid>eNpNkF1LwzAUhoMoOOZ-gHiTP9CZjyZNL0f9qkyGMvEypOmJVmo7klTx39u6IV6dl8PzHg4PQueULCkl-eV9udkuGaHZksmM50IdoRnjLEtSKdnxv3yKFiG8E0LGmqC5nKGHVW12sfkE_ARhaCMuOwceOgvY9R4XfduCjU33ih8H08Umml_4ykSDX5r4hgvff9WhH7wdoTN04kwbYHGYc_R8c70t7pL15rYsVuvEMiliIpVLRcUycE6ltXA0UzxPBeGVIVY4AULmkhhrLK9Trkw9vjqtjBIVkQT4HNH9Xev7EDw4vfPNh_HfmhI9KdGTEj0p0QclY-di32kA4I_PlGRKMP4DwbFdVA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Adaptive Result Inference for Collecting Quantitative Data With Crowdsourcing</title><source>IEEE/IET Electronic Library (IEL)</source><creator>Sun, Hailong ; Hu, Kefan ; Fang, Yili ; Song, Yangqiu</creator><creatorcontrib>Sun, Hailong ; Hu, Kefan ; Fang, Yili ; Song, Yangqiu</creatorcontrib><description>In quantitative crowdsourcing, workers are asked to provide numerical answers. Different from categorical crowdsourcing, result aggregation in quantitative crowdsourcing is processed by combinatorially computing over all workers' answers instead of by merely choosing one from a set of candidate answers. Therefore, existing result aggregation models for categorical crowdsourcing tasks cannot be used in quantitative crowdsourcing. Moreover, the worker ability often varies in the process of crowdsourcing with the changing of workers' skill, willingness, efforts, etc. In this paper, we propose a probabilistic model to characterize the quantitative crowdsourcing problem by considering the changing of worker ability so as to achieve better quality control. The dynamic worker ability is obtained with Kalman filtering and smoother. We design an expectationmaximization-based inference algorithm and a dynamic worker filtering algorithm to compute the aggregated crowdsourcing result. Finally, we conducted experiments with real data on CrowdFlower and the results showed that our approach can effectively rule out low-quality workers dynamically and obtain more accurate results with less costs.</description><identifier>ISSN: 2327-4662</identifier><identifier>EISSN: 2327-4662</identifier><identifier>DOI: 10.1109/JIOT.2017.2673958</identifier><identifier>CODEN: IITJAU</identifier><language>eng</language><publisher>IEEE</publisher><subject>Adaptation models ; Algorithm design and analysis ; Computational modeling ; Crowdsensing ; Crowdsourcing ; Heuristic algorithms ; Inference algorithms ; Kalman filters ; quality control ; quantitative crowdsourcing ; result inference</subject><ispartof>IEEE internet of things journal, 2017-10, Vol.4 (5), p.1389-1398</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c265t-68f45b27eff84d5f178394503ba0c5f5e56960acac3d438ad1965696a85b060e3</citedby><cites>FETCH-LOGICAL-c265t-68f45b27eff84d5f178394503ba0c5f5e56960acac3d438ad1965696a85b060e3</cites><orcidid>0000-0001-7654-5574</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7862852$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,782,786,798,27933,27934,54767</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7862852$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Sun, Hailong</creatorcontrib><creatorcontrib>Hu, Kefan</creatorcontrib><creatorcontrib>Fang, Yili</creatorcontrib><creatorcontrib>Song, Yangqiu</creatorcontrib><title>Adaptive Result Inference for Collecting Quantitative Data With Crowdsourcing</title><title>IEEE internet of things journal</title><addtitle>JIoT</addtitle><description>In quantitative crowdsourcing, workers are asked to provide numerical answers. Different from categorical crowdsourcing, result aggregation in quantitative crowdsourcing is processed by combinatorially computing over all workers' answers instead of by merely choosing one from a set of candidate answers. Therefore, existing result aggregation models for categorical crowdsourcing tasks cannot be used in quantitative crowdsourcing. Moreover, the worker ability often varies in the process of crowdsourcing with the changing of workers' skill, willingness, efforts, etc. In this paper, we propose a probabilistic model to characterize the quantitative crowdsourcing problem by considering the changing of worker ability so as to achieve better quality control. The dynamic worker ability is obtained with Kalman filtering and smoother. We design an expectationmaximization-based inference algorithm and a dynamic worker filtering algorithm to compute the aggregated crowdsourcing result. Finally, we conducted experiments with real data on CrowdFlower and the results showed that our approach can effectively rule out low-quality workers dynamically and obtain more accurate results with less costs.</description><subject>Adaptation models</subject><subject>Algorithm design and analysis</subject><subject>Computational modeling</subject><subject>Crowdsensing</subject><subject>Crowdsourcing</subject><subject>Heuristic algorithms</subject><subject>Inference algorithms</subject><subject>Kalman filters</subject><subject>quality control</subject><subject>quantitative crowdsourcing</subject><subject>result inference</subject><issn>2327-4662</issn><issn>2327-4662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkF1LwzAUhoMoOOZ-gHiTP9CZjyZNL0f9qkyGMvEypOmJVmo7klTx39u6IV6dl8PzHg4PQueULCkl-eV9udkuGaHZksmM50IdoRnjLEtSKdnxv3yKFiG8E0LGmqC5nKGHVW12sfkE_ARhaCMuOwceOgvY9R4XfduCjU33ih8H08Umml_4ykSDX5r4hgvff9WhH7wdoTN04kwbYHGYc_R8c70t7pL15rYsVuvEMiliIpVLRcUycE6ltXA0UzxPBeGVIVY4AULmkhhrLK9Trkw9vjqtjBIVkQT4HNH9Xev7EDw4vfPNh_HfmhI9KdGTEj0p0QclY-di32kA4I_PlGRKMP4DwbFdVA</recordid><startdate>201710</startdate><enddate>201710</enddate><creator>Sun, Hailong</creator><creator>Hu, Kefan</creator><creator>Fang, Yili</creator><creator>Song, Yangqiu</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-7654-5574</orcidid></search><sort><creationdate>201710</creationdate><title>Adaptive Result Inference for Collecting Quantitative Data With Crowdsourcing</title><author>Sun, Hailong ; Hu, Kefan ; Fang, Yili ; Song, Yangqiu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c265t-68f45b27eff84d5f178394503ba0c5f5e56960acac3d438ad1965696a85b060e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Adaptation models</topic><topic>Algorithm design and analysis</topic><topic>Computational modeling</topic><topic>Crowdsensing</topic><topic>Crowdsourcing</topic><topic>Heuristic algorithms</topic><topic>Inference algorithms</topic><topic>Kalman filters</topic><topic>quality control</topic><topic>quantitative crowdsourcing</topic><topic>result inference</topic><toplevel>online_resources</toplevel><creatorcontrib>Sun, Hailong</creatorcontrib><creatorcontrib>Hu, Kefan</creatorcontrib><creatorcontrib>Fang, Yili</creatorcontrib><creatorcontrib>Song, Yangqiu</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE internet of things journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sun, Hailong</au><au>Hu, Kefan</au><au>Fang, Yili</au><au>Song, Yangqiu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptive Result Inference for Collecting Quantitative Data With Crowdsourcing</atitle><jtitle>IEEE internet of things journal</jtitle><stitle>JIoT</stitle><date>2017-10</date><risdate>2017</risdate><volume>4</volume><issue>5</issue><spage>1389</spage><epage>1398</epage><pages>1389-1398</pages><issn>2327-4662</issn><eissn>2327-4662</eissn><coden>IITJAU</coden><abstract>In quantitative crowdsourcing, workers are asked to provide numerical answers. Different from categorical crowdsourcing, result aggregation in quantitative crowdsourcing is processed by combinatorially computing over all workers' answers instead of by merely choosing one from a set of candidate answers. Therefore, existing result aggregation models for categorical crowdsourcing tasks cannot be used in quantitative crowdsourcing. Moreover, the worker ability often varies in the process of crowdsourcing with the changing of workers' skill, willingness, efforts, etc. In this paper, we propose a probabilistic model to characterize the quantitative crowdsourcing problem by considering the changing of worker ability so as to achieve better quality control. The dynamic worker ability is obtained with Kalman filtering and smoother. We design an expectationmaximization-based inference algorithm and a dynamic worker filtering algorithm to compute the aggregated crowdsourcing result. Finally, we conducted experiments with real data on CrowdFlower and the results showed that our approach can effectively rule out low-quality workers dynamically and obtain more accurate results with less costs.</abstract><pub>IEEE</pub><doi>10.1109/JIOT.2017.2673958</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-7654-5574</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2327-4662 |
ispartof | IEEE internet of things journal, 2017-10, Vol.4 (5), p.1389-1398 |
issn | 2327-4662 2327-4662 |
language | eng |
recordid | cdi_crossref_primary_10_1109_JIOT_2017_2673958 |
source | IEEE/IET Electronic Library (IEL) |
subjects | Adaptation models Algorithm design and analysis Computational modeling Crowdsensing Crowdsourcing Heuristic algorithms Inference algorithms Kalman filters quality control quantitative crowdsourcing result inference |
title | Adaptive Result Inference for Collecting Quantitative Data With Crowdsourcing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-03T14%3A51%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptive%20Result%20Inference%20for%20Collecting%20Quantitative%20Data%20With%20Crowdsourcing&rft.jtitle=IEEE%20internet%20of%20things%20journal&rft.au=Sun,%20Hailong&rft.date=2017-10&rft.volume=4&rft.issue=5&rft.spage=1389&rft.epage=1398&rft.pages=1389-1398&rft.issn=2327-4662&rft.eissn=2327-4662&rft.coden=IITJAU&rft_id=info:doi/10.1109/JIOT.2017.2673958&rft_dat=%3Ccrossref_RIE%3E10_1109_JIOT_2017_2673958%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=7862852&rfr_iscdi=true |