Mosaic-CNN: A Combined Two-Step Zero Prediction Approach to Trade off Accuracy and Computation Energy in Convolutional Neural Networks

In convolutional neural networks (CNNs), convolutional layers consume dominant portion of computation energy due to large amount of multiply-accumulate operations (MACs). However, those MACs become meaningless (zeroes) after rectified linear unit when the convolution results become negative. In this...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal on emerging and selected topics in circuits and systems 2018-12, Vol.8 (4), p.770-781
Hauptverfasser: Kim, Cheolhwan, Shin, Dongyeob, Kim, Bohun, Park, Jongsun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 781
container_issue 4
container_start_page 770
container_title IEEE journal on emerging and selected topics in circuits and systems
container_volume 8
creator Kim, Cheolhwan
Shin, Dongyeob
Kim, Bohun
Park, Jongsun
description In convolutional neural networks (CNNs), convolutional layers consume dominant portion of computation energy due to large amount of multiply-accumulate operations (MACs). However, those MACs become meaningless (zeroes) after rectified linear unit when the convolution results become negative. In this paper, we present an efficient approach to predict and skip the convolutions generating zero outputs. The proposed two-step zero prediction approach, called mosaic CNN, can be effectively used for trading off classification accuracy for computation energy in CNN. In the mosaic CNN, the outputs of each convolutional layer are computed considering their spatial surroundings in an output feature map. Here, the types of spatial surroundings (mosaic types) can be selected to save computation energy at the expense of accuracy. In order to further save the computations, we also propose a most significant bits (MSBs) only computation scheme, where a constant value representing least significant bits compensates the MSBs only computations. The CNN accelerator supporting the combined two approaches has been implemented using the 65-nm CMOS process. The numerical results show that compared with the state-of-art processor, the proposed reconfigurable accelerator can achieve energy savings ranging from 16.99% to 29.64% for VGG-16 without seriously compromising the classification accuracy.
doi_str_mv 10.1109/JETCAS.2018.2865006
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JETCAS_2018_2865006</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8434203</ieee_id><sourcerecordid>2159385062</sourcerecordid><originalsourceid>FETCH-LOGICAL-c297t-cdb5e22f40e52047bcf3a0320bb3182ed7a55b1cc0b0684db93cafe9c74e6d753</originalsourceid><addsrcrecordid>eNo9kMtOwzAQRSMEElXpF3RjiXWKH7GTsIui8lIpSC0bNpHjTCCljYOdUPUH-G4cUnU2M7q6dzRzPG9K8IwQHN88zddpsppRTKIZjQTHWJx5I0q48BkT_Pw08_DSm1i7wa64ICIIRt7vs7ayUn66XN6iBKV6l1c1FGi91_6qhQa9g9Ho1UBRqbbSNUqaxmipPlGr0drIApAuS5Qo1RmpDkjWRb-k6Vr5b5_XYD4OqKqdWv_obdercouW4Px9a_fafNkr76KUWwuTYx97b3furQd_8XL_mCYLX9E4bH1V5BwoLQMMnOIgzFXJJGYU5zkjEYUilJznRCmcYxEFRR4zJUuIVRiAKELOxt71sNc98d2BbbON7ow7yGYOUswijgV1Lja4lNHWGiizxlQ7aQ4ZwVnPPBuYZz3z7MjcpaZDqgKAUyIKWEAxY388mH6M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2159385062</pqid></control><display><type>article</type><title>Mosaic-CNN: A Combined Two-Step Zero Prediction Approach to Trade off Accuracy and Computation Energy in Convolutional Neural Networks</title><source>IEEE Electronic Library (IEL)</source><creator>Kim, Cheolhwan ; Shin, Dongyeob ; Kim, Bohun ; Park, Jongsun</creator><creatorcontrib>Kim, Cheolhwan ; Shin, Dongyeob ; Kim, Bohun ; Park, Jongsun</creatorcontrib><description>In convolutional neural networks (CNNs), convolutional layers consume dominant portion of computation energy due to large amount of multiply-accumulate operations (MACs). However, those MACs become meaningless (zeroes) after rectified linear unit when the convolution results become negative. In this paper, we present an efficient approach to predict and skip the convolutions generating zero outputs. The proposed two-step zero prediction approach, called mosaic CNN, can be effectively used for trading off classification accuracy for computation energy in CNN. In the mosaic CNN, the outputs of each convolutional layer are computed considering their spatial surroundings in an output feature map. Here, the types of spatial surroundings (mosaic types) can be selected to save computation energy at the expense of accuracy. In order to further save the computations, we also propose a most significant bits (MSBs) only computation scheme, where a constant value representing least significant bits compensates the MSBs only computations. The CNN accelerator supporting the combined two approaches has been implemented using the 65-nm CMOS process. The numerical results show that compared with the state-of-art processor, the proposed reconfigurable accelerator can achieve energy savings ranging from 16.99% to 29.64% for VGG-16 without seriously compromising the classification accuracy.</description><identifier>ISSN: 2156-3357</identifier><identifier>EISSN: 2156-3365</identifier><identifier>DOI: 10.1109/JETCAS.2018.2865006</identifier><identifier>CODEN: IJESLY</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Accuracy ; Artificial neural networks ; Circuits and systems ; Classification ; CMOS ; Computation ; Computer architecture ; Convolution ; Convolutional neural networks ; Energy conservation ; Energy efficiency ; energy-efficient accelerator ; Feature maps ; Microprocessors ; Neural networks ; Simulation</subject><ispartof>IEEE journal on emerging and selected topics in circuits and systems, 2018-12, Vol.8 (4), p.770-781</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c297t-cdb5e22f40e52047bcf3a0320bb3182ed7a55b1cc0b0684db93cafe9c74e6d753</citedby><cites>FETCH-LOGICAL-c297t-cdb5e22f40e52047bcf3a0320bb3182ed7a55b1cc0b0684db93cafe9c74e6d753</cites><orcidid>0000-0003-3251-0024</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8434203$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8434203$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kim, Cheolhwan</creatorcontrib><creatorcontrib>Shin, Dongyeob</creatorcontrib><creatorcontrib>Kim, Bohun</creatorcontrib><creatorcontrib>Park, Jongsun</creatorcontrib><title>Mosaic-CNN: A Combined Two-Step Zero Prediction Approach to Trade off Accuracy and Computation Energy in Convolutional Neural Networks</title><title>IEEE journal on emerging and selected topics in circuits and systems</title><addtitle>JETCAS</addtitle><description>In convolutional neural networks (CNNs), convolutional layers consume dominant portion of computation energy due to large amount of multiply-accumulate operations (MACs). However, those MACs become meaningless (zeroes) after rectified linear unit when the convolution results become negative. In this paper, we present an efficient approach to predict and skip the convolutions generating zero outputs. The proposed two-step zero prediction approach, called mosaic CNN, can be effectively used for trading off classification accuracy for computation energy in CNN. In the mosaic CNN, the outputs of each convolutional layer are computed considering their spatial surroundings in an output feature map. Here, the types of spatial surroundings (mosaic types) can be selected to save computation energy at the expense of accuracy. In order to further save the computations, we also propose a most significant bits (MSBs) only computation scheme, where a constant value representing least significant bits compensates the MSBs only computations. The CNN accelerator supporting the combined two approaches has been implemented using the 65-nm CMOS process. The numerical results show that compared with the state-of-art processor, the proposed reconfigurable accelerator can achieve energy savings ranging from 16.99% to 29.64% for VGG-16 without seriously compromising the classification accuracy.</description><subject>Accuracy</subject><subject>Artificial neural networks</subject><subject>Circuits and systems</subject><subject>Classification</subject><subject>CMOS</subject><subject>Computation</subject><subject>Computer architecture</subject><subject>Convolution</subject><subject>Convolutional neural networks</subject><subject>Energy conservation</subject><subject>Energy efficiency</subject><subject>energy-efficient accelerator</subject><subject>Feature maps</subject><subject>Microprocessors</subject><subject>Neural networks</subject><subject>Simulation</subject><issn>2156-3357</issn><issn>2156-3365</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMtOwzAQRSMEElXpF3RjiXWKH7GTsIui8lIpSC0bNpHjTCCljYOdUPUH-G4cUnU2M7q6dzRzPG9K8IwQHN88zddpsppRTKIZjQTHWJx5I0q48BkT_Pw08_DSm1i7wa64ICIIRt7vs7ayUn66XN6iBKV6l1c1FGi91_6qhQa9g9Ho1UBRqbbSNUqaxmipPlGr0drIApAuS5Qo1RmpDkjWRb-k6Vr5b5_XYD4OqKqdWv_obdercouW4Px9a_fafNkr76KUWwuTYx97b3furQd_8XL_mCYLX9E4bH1V5BwoLQMMnOIgzFXJJGYU5zkjEYUilJznRCmcYxEFRR4zJUuIVRiAKELOxt71sNc98d2BbbON7ow7yGYOUswijgV1Lja4lNHWGiizxlQ7aQ4ZwVnPPBuYZz3z7MjcpaZDqgKAUyIKWEAxY388mH6M</recordid><startdate>20181201</startdate><enddate>20181201</enddate><creator>Kim, Cheolhwan</creator><creator>Shin, Dongyeob</creator><creator>Kim, Bohun</creator><creator>Park, Jongsun</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-3251-0024</orcidid></search><sort><creationdate>20181201</creationdate><title>Mosaic-CNN: A Combined Two-Step Zero Prediction Approach to Trade off Accuracy and Computation Energy in Convolutional Neural Networks</title><author>Kim, Cheolhwan ; Shin, Dongyeob ; Kim, Bohun ; Park, Jongsun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c297t-cdb5e22f40e52047bcf3a0320bb3182ed7a55b1cc0b0684db93cafe9c74e6d753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Accuracy</topic><topic>Artificial neural networks</topic><topic>Circuits and systems</topic><topic>Classification</topic><topic>CMOS</topic><topic>Computation</topic><topic>Computer architecture</topic><topic>Convolution</topic><topic>Convolutional neural networks</topic><topic>Energy conservation</topic><topic>Energy efficiency</topic><topic>energy-efficient accelerator</topic><topic>Feature maps</topic><topic>Microprocessors</topic><topic>Neural networks</topic><topic>Simulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Cheolhwan</creatorcontrib><creatorcontrib>Shin, Dongyeob</creatorcontrib><creatorcontrib>Kim, Bohun</creatorcontrib><creatorcontrib>Park, Jongsun</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE journal on emerging and selected topics in circuits and systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kim, Cheolhwan</au><au>Shin, Dongyeob</au><au>Kim, Bohun</au><au>Park, Jongsun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mosaic-CNN: A Combined Two-Step Zero Prediction Approach to Trade off Accuracy and Computation Energy in Convolutional Neural Networks</atitle><jtitle>IEEE journal on emerging and selected topics in circuits and systems</jtitle><stitle>JETCAS</stitle><date>2018-12-01</date><risdate>2018</risdate><volume>8</volume><issue>4</issue><spage>770</spage><epage>781</epage><pages>770-781</pages><issn>2156-3357</issn><eissn>2156-3365</eissn><coden>IJESLY</coden><abstract>In convolutional neural networks (CNNs), convolutional layers consume dominant portion of computation energy due to large amount of multiply-accumulate operations (MACs). However, those MACs become meaningless (zeroes) after rectified linear unit when the convolution results become negative. In this paper, we present an efficient approach to predict and skip the convolutions generating zero outputs. The proposed two-step zero prediction approach, called mosaic CNN, can be effectively used for trading off classification accuracy for computation energy in CNN. In the mosaic CNN, the outputs of each convolutional layer are computed considering their spatial surroundings in an output feature map. Here, the types of spatial surroundings (mosaic types) can be selected to save computation energy at the expense of accuracy. In order to further save the computations, we also propose a most significant bits (MSBs) only computation scheme, where a constant value representing least significant bits compensates the MSBs only computations. The CNN accelerator supporting the combined two approaches has been implemented using the 65-nm CMOS process. The numerical results show that compared with the state-of-art processor, the proposed reconfigurable accelerator can achieve energy savings ranging from 16.99% to 29.64% for VGG-16 without seriously compromising the classification accuracy.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JETCAS.2018.2865006</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-3251-0024</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2156-3357
ispartof IEEE journal on emerging and selected topics in circuits and systems, 2018-12, Vol.8 (4), p.770-781
issn 2156-3357
2156-3365
language eng
recordid cdi_crossref_primary_10_1109_JETCAS_2018_2865006
source IEEE Electronic Library (IEL)
subjects Accuracy
Artificial neural networks
Circuits and systems
Classification
CMOS
Computation
Computer architecture
Convolution
Convolutional neural networks
Energy conservation
Energy efficiency
energy-efficient accelerator
Feature maps
Microprocessors
Neural networks
Simulation
title Mosaic-CNN: A Combined Two-Step Zero Prediction Approach to Trade off Accuracy and Computation Energy in Convolutional Neural Networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T05%3A55%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mosaic-CNN:%20A%20Combined%20Two-Step%20Zero%20Prediction%20Approach%20to%20Trade%20off%20Accuracy%20and%20Computation%20Energy%20in%20Convolutional%20Neural%20Networks&rft.jtitle=IEEE%20journal%20on%20emerging%20and%20selected%20topics%20in%20circuits%20and%20systems&rft.au=Kim,%20Cheolhwan&rft.date=2018-12-01&rft.volume=8&rft.issue=4&rft.spage=770&rft.epage=781&rft.pages=770-781&rft.issn=2156-3357&rft.eissn=2156-3365&rft.coden=IJESLY&rft_id=info:doi/10.1109/JETCAS.2018.2865006&rft_dat=%3Cproquest_RIE%3E2159385062%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2159385062&rft_id=info:pmid/&rft_ieee_id=8434203&rfr_iscdi=true