Moth-Flame-Optimization-Based Parameter Estimation for FCS-MPC-Controlled Grid-Connected Converter With LCL Filter

The ability to model a system with high accuracy plays an important role in finite-control-set model-predictive-control (FCS-MPC)-controlled LCL-interfaced grid-connected converters (LCL-GCCs). However, the effect of aging, unmeasured noise, and temperature change on LCL-GCCs may result in parameter...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of emerging and selected topics in power electronics 2022-08, Vol.10 (4), p.4102-4114
Hauptverfasser: Long, Bo, Yang, Wandi, Hu, Qinghua, Guerrero, Josep M., Garcia, Cristian, Rodriguez, Jose, Chong, Kil To
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4114
container_issue 4
container_start_page 4102
container_title IEEE journal of emerging and selected topics in power electronics
container_volume 10
creator Long, Bo
Yang, Wandi
Hu, Qinghua
Guerrero, Josep M.
Garcia, Cristian
Rodriguez, Jose
Chong, Kil To
description The ability to model a system with high accuracy plays an important role in finite-control-set model-predictive-control (FCS-MPC)-controlled LCL-interfaced grid-connected converters (LCL-GCCs). However, the effect of aging, unmeasured noise, and temperature change on LCL-GCCs may result in parameter perturbations between the prediction model and the actual system. A model mismatch may occur, which may lead to violations of constraints, worsen the power quality of the grid current, and even threaten the system stability. This article presents a novel nature-inspired optimization paradigm named moth-flame-optimization (MFO), which applies the spiral logarithmic function to simulate the flight of a moth approaching a flame. The method is designed to efficiently identify and update the model parameters, and the fitness function for the state variables is designed and solved iteratively to minimize mismatches with the model. The advantages of the proposed method are its fast convergence and ability to determine parameters with high accuracy. These advantages effectively prevent the algorithm from converging to local optima. To achieve the harmonic rejection capability, a sliding discrete Fourier transform (SDFT) algorithm is also proposed to predict the harmonic at each sampling interval; thus, the harmonics are considered in the cost function. Experimental comparisons under different scenarios validate the effectiveness of the proposed SDFT-based MFO-MPC method.
doi_str_mv 10.1109/JESTPE.2022.3140228
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JESTPE_2022_3140228</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9669959</ieee_id><sourcerecordid>2700412299</sourcerecordid><originalsourceid>FETCH-LOGICAL-c297t-a3a488ab1c457a71a2a69f9ab76455d872f18200ecf80edb1674fbbc101be0463</originalsourceid><addsrcrecordid>eNo9UF1LwzAUDaLgmPsFeyn4nJmkH0ketbRT6dhgEx9D2qaso2tmkgn6603t2H2593DOuZd7AJhjtMAY8af3bLvbZAuCCFmEOPKN3YAJwQmDCWXx7XWm9B7MrD0gX4zEnLIJMCvt9jDv5FHB9cm1x_ZXulb38EVaVQcbaTzjlAky68l_Kmi0CfJ0C1ebFKa6d0Z3ndcuTVsPuFeV89BP38oM1s_W7YMiLYK87Tx-AHeN7KyaXfoUfOTZLn2FxXr5lj4XsCKcOihDGTEmS1xFMZUUSyIT3nBZ0iSK45pR0mBGEFJVw5CqS5zQqCnLCiNcKhQl4RQ8jntPRn-dlXXioM-m9ycFoQhFmBDOvSocVZXR1hrViJPxj5ofgZEY8hVjvmLIV1zy9a756GqVUlcHTxLOYx7-AWiHdtc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2700412299</pqid></control><display><type>article</type><title>Moth-Flame-Optimization-Based Parameter Estimation for FCS-MPC-Controlled Grid-Connected Converter With LCL Filter</title><source>IEEE Electronic Library (IEL)</source><creator>Long, Bo ; Yang, Wandi ; Hu, Qinghua ; Guerrero, Josep M. ; Garcia, Cristian ; Rodriguez, Jose ; Chong, Kil To</creator><creatorcontrib>Long, Bo ; Yang, Wandi ; Hu, Qinghua ; Guerrero, Josep M. ; Garcia, Cristian ; Rodriguez, Jose ; Chong, Kil To</creatorcontrib><description>The ability to model a system with high accuracy plays an important role in finite-control-set model-predictive-control (FCS-MPC)-controlled LCL-interfaced grid-connected converters (LCL-GCCs). However, the effect of aging, unmeasured noise, and temperature change on LCL-GCCs may result in parameter perturbations between the prediction model and the actual system. A model mismatch may occur, which may lead to violations of constraints, worsen the power quality of the grid current, and even threaten the system stability. This article presents a novel nature-inspired optimization paradigm named moth-flame-optimization (MFO), which applies the spiral logarithmic function to simulate the flight of a moth approaching a flame. The method is designed to efficiently identify and update the model parameters, and the fitness function for the state variables is designed and solved iteratively to minimize mismatches with the model. The advantages of the proposed method are its fast convergence and ability to determine parameters with high accuracy. These advantages effectively prevent the algorithm from converging to local optima. To achieve the harmonic rejection capability, a sliding discrete Fourier transform (SDFT) algorithm is also proposed to predict the harmonic at each sampling interval; thus, the harmonics are considered in the cost function. Experimental comparisons under different scenarios validate the effectiveness of the proposed SDFT-based MFO-MPC method.</description><identifier>ISSN: 2168-6777</identifier><identifier>EISSN: 2168-6785</identifier><identifier>DOI: 10.1109/JESTPE.2022.3140228</identifier><identifier>CODEN: IJESN2</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Convergence ; Cost function ; Fourier transforms ; Grid-connected converter ; Harmonic analysis ; Harmonics ; Mathematical models ; model-predictive-control ; moth–flame optimization (MFO) ; Optimization ; Parameter estimation ; Parameter identification ; parameter mismatch ; Perturbation ; Power electronics ; Power harmonic filters ; power quality ; Prediction models ; Predictive control ; Predictive models ; Systems stability</subject><ispartof>IEEE journal of emerging and selected topics in power electronics, 2022-08, Vol.10 (4), p.4102-4114</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c297t-a3a488ab1c457a71a2a69f9ab76455d872f18200ecf80edb1674fbbc101be0463</citedby><cites>FETCH-LOGICAL-c297t-a3a488ab1c457a71a2a69f9ab76455d872f18200ecf80edb1674fbbc101be0463</cites><orcidid>0000-0001-5236-4592 ; 0000-0003-2953-6362 ; 0000-0002-1410-4121 ; 0000-0002-7939-422X ; 0000-0002-1952-0001</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9669959$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9669959$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Long, Bo</creatorcontrib><creatorcontrib>Yang, Wandi</creatorcontrib><creatorcontrib>Hu, Qinghua</creatorcontrib><creatorcontrib>Guerrero, Josep M.</creatorcontrib><creatorcontrib>Garcia, Cristian</creatorcontrib><creatorcontrib>Rodriguez, Jose</creatorcontrib><creatorcontrib>Chong, Kil To</creatorcontrib><title>Moth-Flame-Optimization-Based Parameter Estimation for FCS-MPC-Controlled Grid-Connected Converter With LCL Filter</title><title>IEEE journal of emerging and selected topics in power electronics</title><addtitle>JESTPE</addtitle><description>The ability to model a system with high accuracy plays an important role in finite-control-set model-predictive-control (FCS-MPC)-controlled LCL-interfaced grid-connected converters (LCL-GCCs). However, the effect of aging, unmeasured noise, and temperature change on LCL-GCCs may result in parameter perturbations between the prediction model and the actual system. A model mismatch may occur, which may lead to violations of constraints, worsen the power quality of the grid current, and even threaten the system stability. This article presents a novel nature-inspired optimization paradigm named moth-flame-optimization (MFO), which applies the spiral logarithmic function to simulate the flight of a moth approaching a flame. The method is designed to efficiently identify and update the model parameters, and the fitness function for the state variables is designed and solved iteratively to minimize mismatches with the model. The advantages of the proposed method are its fast convergence and ability to determine parameters with high accuracy. These advantages effectively prevent the algorithm from converging to local optima. To achieve the harmonic rejection capability, a sliding discrete Fourier transform (SDFT) algorithm is also proposed to predict the harmonic at each sampling interval; thus, the harmonics are considered in the cost function. Experimental comparisons under different scenarios validate the effectiveness of the proposed SDFT-based MFO-MPC method.</description><subject>Algorithms</subject><subject>Convergence</subject><subject>Cost function</subject><subject>Fourier transforms</subject><subject>Grid-connected converter</subject><subject>Harmonic analysis</subject><subject>Harmonics</subject><subject>Mathematical models</subject><subject>model-predictive-control</subject><subject>moth–flame optimization (MFO)</subject><subject>Optimization</subject><subject>Parameter estimation</subject><subject>Parameter identification</subject><subject>parameter mismatch</subject><subject>Perturbation</subject><subject>Power electronics</subject><subject>Power harmonic filters</subject><subject>power quality</subject><subject>Prediction models</subject><subject>Predictive control</subject><subject>Predictive models</subject><subject>Systems stability</subject><issn>2168-6777</issn><issn>2168-6785</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9UF1LwzAUDaLgmPsFeyn4nJmkH0ketbRT6dhgEx9D2qaso2tmkgn6603t2H2593DOuZd7AJhjtMAY8af3bLvbZAuCCFmEOPKN3YAJwQmDCWXx7XWm9B7MrD0gX4zEnLIJMCvt9jDv5FHB9cm1x_ZXulb38EVaVQcbaTzjlAky68l_Kmi0CfJ0C1ebFKa6d0Z3ndcuTVsPuFeV89BP38oM1s_W7YMiLYK87Tx-AHeN7KyaXfoUfOTZLn2FxXr5lj4XsCKcOihDGTEmS1xFMZUUSyIT3nBZ0iSK45pR0mBGEFJVw5CqS5zQqCnLCiNcKhQl4RQ8jntPRn-dlXXioM-m9ycFoQhFmBDOvSocVZXR1hrViJPxj5ofgZEY8hVjvmLIV1zy9a756GqVUlcHTxLOYx7-AWiHdtc</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Long, Bo</creator><creator>Yang, Wandi</creator><creator>Hu, Qinghua</creator><creator>Guerrero, Josep M.</creator><creator>Garcia, Cristian</creator><creator>Rodriguez, Jose</creator><creator>Chong, Kil To</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-5236-4592</orcidid><orcidid>https://orcid.org/0000-0003-2953-6362</orcidid><orcidid>https://orcid.org/0000-0002-1410-4121</orcidid><orcidid>https://orcid.org/0000-0002-7939-422X</orcidid><orcidid>https://orcid.org/0000-0002-1952-0001</orcidid></search><sort><creationdate>20220801</creationdate><title>Moth-Flame-Optimization-Based Parameter Estimation for FCS-MPC-Controlled Grid-Connected Converter With LCL Filter</title><author>Long, Bo ; Yang, Wandi ; Hu, Qinghua ; Guerrero, Josep M. ; Garcia, Cristian ; Rodriguez, Jose ; Chong, Kil To</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c297t-a3a488ab1c457a71a2a69f9ab76455d872f18200ecf80edb1674fbbc101be0463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Convergence</topic><topic>Cost function</topic><topic>Fourier transforms</topic><topic>Grid-connected converter</topic><topic>Harmonic analysis</topic><topic>Harmonics</topic><topic>Mathematical models</topic><topic>model-predictive-control</topic><topic>moth–flame optimization (MFO)</topic><topic>Optimization</topic><topic>Parameter estimation</topic><topic>Parameter identification</topic><topic>parameter mismatch</topic><topic>Perturbation</topic><topic>Power electronics</topic><topic>Power harmonic filters</topic><topic>power quality</topic><topic>Prediction models</topic><topic>Predictive control</topic><topic>Predictive models</topic><topic>Systems stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Long, Bo</creatorcontrib><creatorcontrib>Yang, Wandi</creatorcontrib><creatorcontrib>Hu, Qinghua</creatorcontrib><creatorcontrib>Guerrero, Josep M.</creatorcontrib><creatorcontrib>Garcia, Cristian</creatorcontrib><creatorcontrib>Rodriguez, Jose</creatorcontrib><creatorcontrib>Chong, Kil To</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE journal of emerging and selected topics in power electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Long, Bo</au><au>Yang, Wandi</au><au>Hu, Qinghua</au><au>Guerrero, Josep M.</au><au>Garcia, Cristian</au><au>Rodriguez, Jose</au><au>Chong, Kil To</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Moth-Flame-Optimization-Based Parameter Estimation for FCS-MPC-Controlled Grid-Connected Converter With LCL Filter</atitle><jtitle>IEEE journal of emerging and selected topics in power electronics</jtitle><stitle>JESTPE</stitle><date>2022-08-01</date><risdate>2022</risdate><volume>10</volume><issue>4</issue><spage>4102</spage><epage>4114</epage><pages>4102-4114</pages><issn>2168-6777</issn><eissn>2168-6785</eissn><coden>IJESN2</coden><abstract>The ability to model a system with high accuracy plays an important role in finite-control-set model-predictive-control (FCS-MPC)-controlled LCL-interfaced grid-connected converters (LCL-GCCs). However, the effect of aging, unmeasured noise, and temperature change on LCL-GCCs may result in parameter perturbations between the prediction model and the actual system. A model mismatch may occur, which may lead to violations of constraints, worsen the power quality of the grid current, and even threaten the system stability. This article presents a novel nature-inspired optimization paradigm named moth-flame-optimization (MFO), which applies the spiral logarithmic function to simulate the flight of a moth approaching a flame. The method is designed to efficiently identify and update the model parameters, and the fitness function for the state variables is designed and solved iteratively to minimize mismatches with the model. The advantages of the proposed method are its fast convergence and ability to determine parameters with high accuracy. These advantages effectively prevent the algorithm from converging to local optima. To achieve the harmonic rejection capability, a sliding discrete Fourier transform (SDFT) algorithm is also proposed to predict the harmonic at each sampling interval; thus, the harmonics are considered in the cost function. Experimental comparisons under different scenarios validate the effectiveness of the proposed SDFT-based MFO-MPC method.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JESTPE.2022.3140228</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-5236-4592</orcidid><orcidid>https://orcid.org/0000-0003-2953-6362</orcidid><orcidid>https://orcid.org/0000-0002-1410-4121</orcidid><orcidid>https://orcid.org/0000-0002-7939-422X</orcidid><orcidid>https://orcid.org/0000-0002-1952-0001</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2168-6777
ispartof IEEE journal of emerging and selected topics in power electronics, 2022-08, Vol.10 (4), p.4102-4114
issn 2168-6777
2168-6785
language eng
recordid cdi_crossref_primary_10_1109_JESTPE_2022_3140228
source IEEE Electronic Library (IEL)
subjects Algorithms
Convergence
Cost function
Fourier transforms
Grid-connected converter
Harmonic analysis
Harmonics
Mathematical models
model-predictive-control
moth–flame optimization (MFO)
Optimization
Parameter estimation
Parameter identification
parameter mismatch
Perturbation
Power electronics
Power harmonic filters
power quality
Prediction models
Predictive control
Predictive models
Systems stability
title Moth-Flame-Optimization-Based Parameter Estimation for FCS-MPC-Controlled Grid-Connected Converter With LCL Filter
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T21%3A35%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Moth-Flame-Optimization-Based%20Parameter%20Estimation%20for%20FCS-MPC-Controlled%20Grid-Connected%20Converter%20With%20LCL%20Filter&rft.jtitle=IEEE%20journal%20of%20emerging%20and%20selected%20topics%20in%20power%20electronics&rft.au=Long,%20Bo&rft.date=2022-08-01&rft.volume=10&rft.issue=4&rft.spage=4102&rft.epage=4114&rft.pages=4102-4114&rft.issn=2168-6777&rft.eissn=2168-6785&rft.coden=IJESN2&rft_id=info:doi/10.1109/JESTPE.2022.3140228&rft_dat=%3Cproquest_RIE%3E2700412299%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2700412299&rft_id=info:pmid/&rft_ieee_id=9669959&rfr_iscdi=true