A Transient 3-D Thermal Modeling Method for IGBT Modules Considering Uneven Power Losses and Cooling Conditions

Junction temperature is a key parameter for the safe operation of power semiconductor devices in power electronic systems. However, it is difficult to forecast the accurate thermal stress of the device in field use. Consequently, engineers tend to use higher rated devices to maintain excessive margi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of emerging and selected topics in power electronics 2021-08, Vol.9 (4), p.3959-3970
Hauptverfasser: Wang, Jianpeng, Chen, Wenjie, Wang, Laili, Wang, Binyu, Zhao, Cheng, Ma, Dingkun, Yang, Fengtao, Li, Yan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3970
container_issue 4
container_start_page 3959
container_title IEEE journal of emerging and selected topics in power electronics
container_volume 9
creator Wang, Jianpeng
Chen, Wenjie
Wang, Laili
Wang, Binyu
Zhao, Cheng
Ma, Dingkun
Yang, Fengtao
Li, Yan
description Junction temperature is a key parameter for the safe operation of power semiconductor devices in power electronic systems. However, it is difficult to forecast the accurate thermal stress of the device in field use. Consequently, engineers tend to use higher rated devices to maintain excessive margin, resulting in a higher cost. In this article, a transient 3-D thermal modeling method for insulated gate bipolar transistor (IGBT) modules is proposed to obtain accurate temperature distribution considering uneven power losses and cooling conditions. The analytical model of uneven switching energy losses among the parallel IGBT chips in modules is built according to the analysis of device simulation results. The effect of uneven cooling conditions on temperature distribution in IGBT modules is considered by thermal-fluid cosimulation. Furthermore, a hybrid simulation strategy is proposed to obtain the transient thermal behavior in three dimensions. Through appropriate interface design, the power loss model is connected with the finite element model to achieve field-circuit cosimulation with multiple time steps, which takes full consideration of the multiphysical coupling effects among power loss, temperature, and flow fields. Finally, the thermal stresses of IGBT modules under different operating conditions are forecast by the proposed method.
doi_str_mv 10.1109/JESTPE.2020.3021679
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JESTPE_2020_3021679</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9186693</ieee_id><sourcerecordid>2556486296</sourcerecordid><originalsourceid>FETCH-LOGICAL-c297t-c9dc9798ca3ba08bf43d2ded52386df76816d5ba2acd0d31412b39e722694cbe3</originalsourceid><addsrcrecordid>eNo9kE1PwkAQhhujiQT5BVw28Vzcj3Y_joiIGIgklvNm251KCXRxWzT-e7fWMJeZZJ5ndvNG0ZjgCSFYPbzO37PNfEIxxROGKeFCXUWD0GXMhUyvL7MQt9GoafY4lKSpEnIQuSnKvKmbCuoWsfgJZTvwR3NAa2fhUNUfaA3tzllUOo-Wi8esW5wP0KCZC5YF3zHbGr6gRhv3DR6tXNOEvaltYNzfjcDaqq2CcRfdlObQwOi_D6Pt8zybvcSrt8VyNl3FBVWijQtlCyWULAzLDZZ5mTBLLdiUMsltKbgk3Ka5oaaw2DKSEJozBYJSrpIiBzaM7vu7J-8-z9C0eu_Ovg5PapqmPJGcKh4o1lOFD5_2UOqTr47G_2iCdReu7sPVXbj6P9xgjXurAoCLoYjkXDH2C3Zcdeg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2556486296</pqid></control><display><type>article</type><title>A Transient 3-D Thermal Modeling Method for IGBT Modules Considering Uneven Power Losses and Cooling Conditions</title><source>IEEE Electronic Library (IEL)</source><creator>Wang, Jianpeng ; Chen, Wenjie ; Wang, Laili ; Wang, Binyu ; Zhao, Cheng ; Ma, Dingkun ; Yang, Fengtao ; Li, Yan</creator><creatorcontrib>Wang, Jianpeng ; Chen, Wenjie ; Wang, Laili ; Wang, Binyu ; Zhao, Cheng ; Ma, Dingkun ; Yang, Fengtao ; Li, Yan</creatorcontrib><description>Junction temperature is a key parameter for the safe operation of power semiconductor devices in power electronic systems. However, it is difficult to forecast the accurate thermal stress of the device in field use. Consequently, engineers tend to use higher rated devices to maintain excessive margin, resulting in a higher cost. In this article, a transient 3-D thermal modeling method for insulated gate bipolar transistor (IGBT) modules is proposed to obtain accurate temperature distribution considering uneven power losses and cooling conditions. The analytical model of uneven switching energy losses among the parallel IGBT chips in modules is built according to the analysis of device simulation results. The effect of uneven cooling conditions on temperature distribution in IGBT modules is considered by thermal-fluid cosimulation. Furthermore, a hybrid simulation strategy is proposed to obtain the transient thermal behavior in three dimensions. Through appropriate interface design, the power loss model is connected with the finite element model to achieve field-circuit cosimulation with multiple time steps, which takes full consideration of the multiphysical coupling effects among power loss, temperature, and flow fields. Finally, the thermal stresses of IGBT modules under different operating conditions are forecast by the proposed method.</description><identifier>ISSN: 2168-6777</identifier><identifier>EISSN: 2168-6785</identifier><identifier>DOI: 10.1109/JESTPE.2020.3021679</identifier><identifier>CODEN: IJESN2</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Circuits ; Electric power distribution ; Electronic systems ; Energy loss ; Finite element analysis ; Finite element method ; Finite element method (FEM) ; insulated gate bipolar transistor (IGBT) ; Insulated gate bipolar transistors ; Integrated circuit modeling ; Junctions ; Mathematical model ; Mathematical models ; Modelling ; Modules ; multiphysical fields coupling ; Power semiconductor devices ; Solid modeling ; Temperature distribution ; Thermal analysis ; thermal model ; Thermal stress ; Thermodynamic properties ; Three dimensional models</subject><ispartof>IEEE journal of emerging and selected topics in power electronics, 2021-08, Vol.9 (4), p.3959-3970</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c297t-c9dc9798ca3ba08bf43d2ded52386df76816d5ba2acd0d31412b39e722694cbe3</citedby><cites>FETCH-LOGICAL-c297t-c9dc9798ca3ba08bf43d2ded52386df76816d5ba2acd0d31412b39e722694cbe3</cites><orcidid>0000-0002-3828-5270 ; 0000-0003-4778-5901 ; 0000-0001-6373-1749 ; 0000-0001-7205-4196 ; 0000-0002-4116-5392 ; 0000-0002-9938-5590</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9186693$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9186693$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wang, Jianpeng</creatorcontrib><creatorcontrib>Chen, Wenjie</creatorcontrib><creatorcontrib>Wang, Laili</creatorcontrib><creatorcontrib>Wang, Binyu</creatorcontrib><creatorcontrib>Zhao, Cheng</creatorcontrib><creatorcontrib>Ma, Dingkun</creatorcontrib><creatorcontrib>Yang, Fengtao</creatorcontrib><creatorcontrib>Li, Yan</creatorcontrib><title>A Transient 3-D Thermal Modeling Method for IGBT Modules Considering Uneven Power Losses and Cooling Conditions</title><title>IEEE journal of emerging and selected topics in power electronics</title><addtitle>JESTPE</addtitle><description>Junction temperature is a key parameter for the safe operation of power semiconductor devices in power electronic systems. However, it is difficult to forecast the accurate thermal stress of the device in field use. Consequently, engineers tend to use higher rated devices to maintain excessive margin, resulting in a higher cost. In this article, a transient 3-D thermal modeling method for insulated gate bipolar transistor (IGBT) modules is proposed to obtain accurate temperature distribution considering uneven power losses and cooling conditions. The analytical model of uneven switching energy losses among the parallel IGBT chips in modules is built according to the analysis of device simulation results. The effect of uneven cooling conditions on temperature distribution in IGBT modules is considered by thermal-fluid cosimulation. Furthermore, a hybrid simulation strategy is proposed to obtain the transient thermal behavior in three dimensions. Through appropriate interface design, the power loss model is connected with the finite element model to achieve field-circuit cosimulation with multiple time steps, which takes full consideration of the multiphysical coupling effects among power loss, temperature, and flow fields. Finally, the thermal stresses of IGBT modules under different operating conditions are forecast by the proposed method.</description><subject>Circuits</subject><subject>Electric power distribution</subject><subject>Electronic systems</subject><subject>Energy loss</subject><subject>Finite element analysis</subject><subject>Finite element method</subject><subject>Finite element method (FEM)</subject><subject>insulated gate bipolar transistor (IGBT)</subject><subject>Insulated gate bipolar transistors</subject><subject>Integrated circuit modeling</subject><subject>Junctions</subject><subject>Mathematical model</subject><subject>Mathematical models</subject><subject>Modelling</subject><subject>Modules</subject><subject>multiphysical fields coupling</subject><subject>Power semiconductor devices</subject><subject>Solid modeling</subject><subject>Temperature distribution</subject><subject>Thermal analysis</subject><subject>thermal model</subject><subject>Thermal stress</subject><subject>Thermodynamic properties</subject><subject>Three dimensional models</subject><issn>2168-6777</issn><issn>2168-6785</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1PwkAQhhujiQT5BVw28Vzcj3Y_joiIGIgklvNm251KCXRxWzT-e7fWMJeZZJ5ndvNG0ZjgCSFYPbzO37PNfEIxxROGKeFCXUWD0GXMhUyvL7MQt9GoafY4lKSpEnIQuSnKvKmbCuoWsfgJZTvwR3NAa2fhUNUfaA3tzllUOo-Wi8esW5wP0KCZC5YF3zHbGr6gRhv3DR6tXNOEvaltYNzfjcDaqq2CcRfdlObQwOi_D6Pt8zybvcSrt8VyNl3FBVWijQtlCyWULAzLDZZ5mTBLLdiUMsltKbgk3Ka5oaaw2DKSEJozBYJSrpIiBzaM7vu7J-8-z9C0eu_Ovg5PapqmPJGcKh4o1lOFD5_2UOqTr47G_2iCdReu7sPVXbj6P9xgjXurAoCLoYjkXDH2C3Zcdeg</recordid><startdate>20210801</startdate><enddate>20210801</enddate><creator>Wang, Jianpeng</creator><creator>Chen, Wenjie</creator><creator>Wang, Laili</creator><creator>Wang, Binyu</creator><creator>Zhao, Cheng</creator><creator>Ma, Dingkun</creator><creator>Yang, Fengtao</creator><creator>Li, Yan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-3828-5270</orcidid><orcidid>https://orcid.org/0000-0003-4778-5901</orcidid><orcidid>https://orcid.org/0000-0001-6373-1749</orcidid><orcidid>https://orcid.org/0000-0001-7205-4196</orcidid><orcidid>https://orcid.org/0000-0002-4116-5392</orcidid><orcidid>https://orcid.org/0000-0002-9938-5590</orcidid></search><sort><creationdate>20210801</creationdate><title>A Transient 3-D Thermal Modeling Method for IGBT Modules Considering Uneven Power Losses and Cooling Conditions</title><author>Wang, Jianpeng ; Chen, Wenjie ; Wang, Laili ; Wang, Binyu ; Zhao, Cheng ; Ma, Dingkun ; Yang, Fengtao ; Li, Yan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c297t-c9dc9798ca3ba08bf43d2ded52386df76816d5ba2acd0d31412b39e722694cbe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Circuits</topic><topic>Electric power distribution</topic><topic>Electronic systems</topic><topic>Energy loss</topic><topic>Finite element analysis</topic><topic>Finite element method</topic><topic>Finite element method (FEM)</topic><topic>insulated gate bipolar transistor (IGBT)</topic><topic>Insulated gate bipolar transistors</topic><topic>Integrated circuit modeling</topic><topic>Junctions</topic><topic>Mathematical model</topic><topic>Mathematical models</topic><topic>Modelling</topic><topic>Modules</topic><topic>multiphysical fields coupling</topic><topic>Power semiconductor devices</topic><topic>Solid modeling</topic><topic>Temperature distribution</topic><topic>Thermal analysis</topic><topic>thermal model</topic><topic>Thermal stress</topic><topic>Thermodynamic properties</topic><topic>Three dimensional models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Jianpeng</creatorcontrib><creatorcontrib>Chen, Wenjie</creatorcontrib><creatorcontrib>Wang, Laili</creatorcontrib><creatorcontrib>Wang, Binyu</creatorcontrib><creatorcontrib>Zhao, Cheng</creatorcontrib><creatorcontrib>Ma, Dingkun</creatorcontrib><creatorcontrib>Yang, Fengtao</creatorcontrib><creatorcontrib>Li, Yan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE journal of emerging and selected topics in power electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wang, Jianpeng</au><au>Chen, Wenjie</au><au>Wang, Laili</au><au>Wang, Binyu</au><au>Zhao, Cheng</au><au>Ma, Dingkun</au><au>Yang, Fengtao</au><au>Li, Yan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Transient 3-D Thermal Modeling Method for IGBT Modules Considering Uneven Power Losses and Cooling Conditions</atitle><jtitle>IEEE journal of emerging and selected topics in power electronics</jtitle><stitle>JESTPE</stitle><date>2021-08-01</date><risdate>2021</risdate><volume>9</volume><issue>4</issue><spage>3959</spage><epage>3970</epage><pages>3959-3970</pages><issn>2168-6777</issn><eissn>2168-6785</eissn><coden>IJESN2</coden><abstract>Junction temperature is a key parameter for the safe operation of power semiconductor devices in power electronic systems. However, it is difficult to forecast the accurate thermal stress of the device in field use. Consequently, engineers tend to use higher rated devices to maintain excessive margin, resulting in a higher cost. In this article, a transient 3-D thermal modeling method for insulated gate bipolar transistor (IGBT) modules is proposed to obtain accurate temperature distribution considering uneven power losses and cooling conditions. The analytical model of uneven switching energy losses among the parallel IGBT chips in modules is built according to the analysis of device simulation results. The effect of uneven cooling conditions on temperature distribution in IGBT modules is considered by thermal-fluid cosimulation. Furthermore, a hybrid simulation strategy is proposed to obtain the transient thermal behavior in three dimensions. Through appropriate interface design, the power loss model is connected with the finite element model to achieve field-circuit cosimulation with multiple time steps, which takes full consideration of the multiphysical coupling effects among power loss, temperature, and flow fields. Finally, the thermal stresses of IGBT modules under different operating conditions are forecast by the proposed method.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JESTPE.2020.3021679</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-3828-5270</orcidid><orcidid>https://orcid.org/0000-0003-4778-5901</orcidid><orcidid>https://orcid.org/0000-0001-6373-1749</orcidid><orcidid>https://orcid.org/0000-0001-7205-4196</orcidid><orcidid>https://orcid.org/0000-0002-4116-5392</orcidid><orcidid>https://orcid.org/0000-0002-9938-5590</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2168-6777
ispartof IEEE journal of emerging and selected topics in power electronics, 2021-08, Vol.9 (4), p.3959-3970
issn 2168-6777
2168-6785
language eng
recordid cdi_crossref_primary_10_1109_JESTPE_2020_3021679
source IEEE Electronic Library (IEL)
subjects Circuits
Electric power distribution
Electronic systems
Energy loss
Finite element analysis
Finite element method
Finite element method (FEM)
insulated gate bipolar transistor (IGBT)
Insulated gate bipolar transistors
Integrated circuit modeling
Junctions
Mathematical model
Mathematical models
Modelling
Modules
multiphysical fields coupling
Power semiconductor devices
Solid modeling
Temperature distribution
Thermal analysis
thermal model
Thermal stress
Thermodynamic properties
Three dimensional models
title A Transient 3-D Thermal Modeling Method for IGBT Modules Considering Uneven Power Losses and Cooling Conditions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T16%3A30%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Transient%203-D%20Thermal%20Modeling%20Method%20for%20IGBT%20Modules%20Considering%20Uneven%20Power%20Losses%20and%20Cooling%20Conditions&rft.jtitle=IEEE%20journal%20of%20emerging%20and%20selected%20topics%20in%20power%20electronics&rft.au=Wang,%20Jianpeng&rft.date=2021-08-01&rft.volume=9&rft.issue=4&rft.spage=3959&rft.epage=3970&rft.pages=3959-3970&rft.issn=2168-6777&rft.eissn=2168-6785&rft.coden=IJESN2&rft_id=info:doi/10.1109/JESTPE.2020.3021679&rft_dat=%3Cproquest_RIE%3E2556486296%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2556486296&rft_id=info:pmid/&rft_ieee_id=9186693&rfr_iscdi=true