A Transient 3-D Thermal Modeling Method for IGBT Modules Considering Uneven Power Losses and Cooling Conditions
Junction temperature is a key parameter for the safe operation of power semiconductor devices in power electronic systems. However, it is difficult to forecast the accurate thermal stress of the device in field use. Consequently, engineers tend to use higher rated devices to maintain excessive margi...
Gespeichert in:
Veröffentlicht in: | IEEE journal of emerging and selected topics in power electronics 2021-08, Vol.9 (4), p.3959-3970 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3970 |
---|---|
container_issue | 4 |
container_start_page | 3959 |
container_title | IEEE journal of emerging and selected topics in power electronics |
container_volume | 9 |
creator | Wang, Jianpeng Chen, Wenjie Wang, Laili Wang, Binyu Zhao, Cheng Ma, Dingkun Yang, Fengtao Li, Yan |
description | Junction temperature is a key parameter for the safe operation of power semiconductor devices in power electronic systems. However, it is difficult to forecast the accurate thermal stress of the device in field use. Consequently, engineers tend to use higher rated devices to maintain excessive margin, resulting in a higher cost. In this article, a transient 3-D thermal modeling method for insulated gate bipolar transistor (IGBT) modules is proposed to obtain accurate temperature distribution considering uneven power losses and cooling conditions. The analytical model of uneven switching energy losses among the parallel IGBT chips in modules is built according to the analysis of device simulation results. The effect of uneven cooling conditions on temperature distribution in IGBT modules is considered by thermal-fluid cosimulation. Furthermore, a hybrid simulation strategy is proposed to obtain the transient thermal behavior in three dimensions. Through appropriate interface design, the power loss model is connected with the finite element model to achieve field-circuit cosimulation with multiple time steps, which takes full consideration of the multiphysical coupling effects among power loss, temperature, and flow fields. Finally, the thermal stresses of IGBT modules under different operating conditions are forecast by the proposed method. |
doi_str_mv | 10.1109/JESTPE.2020.3021679 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JESTPE_2020_3021679</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9186693</ieee_id><sourcerecordid>2556486296</sourcerecordid><originalsourceid>FETCH-LOGICAL-c297t-c9dc9798ca3ba08bf43d2ded52386df76816d5ba2acd0d31412b39e722694cbe3</originalsourceid><addsrcrecordid>eNo9kE1PwkAQhhujiQT5BVw28Vzcj3Y_joiIGIgklvNm251KCXRxWzT-e7fWMJeZZJ5ndvNG0ZjgCSFYPbzO37PNfEIxxROGKeFCXUWD0GXMhUyvL7MQt9GoafY4lKSpEnIQuSnKvKmbCuoWsfgJZTvwR3NAa2fhUNUfaA3tzllUOo-Wi8esW5wP0KCZC5YF3zHbGr6gRhv3DR6tXNOEvaltYNzfjcDaqq2CcRfdlObQwOi_D6Pt8zybvcSrt8VyNl3FBVWijQtlCyWULAzLDZZ5mTBLLdiUMsltKbgk3Ka5oaaw2DKSEJozBYJSrpIiBzaM7vu7J-8-z9C0eu_Ovg5PapqmPJGcKh4o1lOFD5_2UOqTr47G_2iCdReu7sPVXbj6P9xgjXurAoCLoYjkXDH2C3Zcdeg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2556486296</pqid></control><display><type>article</type><title>A Transient 3-D Thermal Modeling Method for IGBT Modules Considering Uneven Power Losses and Cooling Conditions</title><source>IEEE Electronic Library (IEL)</source><creator>Wang, Jianpeng ; Chen, Wenjie ; Wang, Laili ; Wang, Binyu ; Zhao, Cheng ; Ma, Dingkun ; Yang, Fengtao ; Li, Yan</creator><creatorcontrib>Wang, Jianpeng ; Chen, Wenjie ; Wang, Laili ; Wang, Binyu ; Zhao, Cheng ; Ma, Dingkun ; Yang, Fengtao ; Li, Yan</creatorcontrib><description>Junction temperature is a key parameter for the safe operation of power semiconductor devices in power electronic systems. However, it is difficult to forecast the accurate thermal stress of the device in field use. Consequently, engineers tend to use higher rated devices to maintain excessive margin, resulting in a higher cost. In this article, a transient 3-D thermal modeling method for insulated gate bipolar transistor (IGBT) modules is proposed to obtain accurate temperature distribution considering uneven power losses and cooling conditions. The analytical model of uneven switching energy losses among the parallel IGBT chips in modules is built according to the analysis of device simulation results. The effect of uneven cooling conditions on temperature distribution in IGBT modules is considered by thermal-fluid cosimulation. Furthermore, a hybrid simulation strategy is proposed to obtain the transient thermal behavior in three dimensions. Through appropriate interface design, the power loss model is connected with the finite element model to achieve field-circuit cosimulation with multiple time steps, which takes full consideration of the multiphysical coupling effects among power loss, temperature, and flow fields. Finally, the thermal stresses of IGBT modules under different operating conditions are forecast by the proposed method.</description><identifier>ISSN: 2168-6777</identifier><identifier>EISSN: 2168-6785</identifier><identifier>DOI: 10.1109/JESTPE.2020.3021679</identifier><identifier>CODEN: IJESN2</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Circuits ; Electric power distribution ; Electronic systems ; Energy loss ; Finite element analysis ; Finite element method ; Finite element method (FEM) ; insulated gate bipolar transistor (IGBT) ; Insulated gate bipolar transistors ; Integrated circuit modeling ; Junctions ; Mathematical model ; Mathematical models ; Modelling ; Modules ; multiphysical fields coupling ; Power semiconductor devices ; Solid modeling ; Temperature distribution ; Thermal analysis ; thermal model ; Thermal stress ; Thermodynamic properties ; Three dimensional models</subject><ispartof>IEEE journal of emerging and selected topics in power electronics, 2021-08, Vol.9 (4), p.3959-3970</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c297t-c9dc9798ca3ba08bf43d2ded52386df76816d5ba2acd0d31412b39e722694cbe3</citedby><cites>FETCH-LOGICAL-c297t-c9dc9798ca3ba08bf43d2ded52386df76816d5ba2acd0d31412b39e722694cbe3</cites><orcidid>0000-0002-3828-5270 ; 0000-0003-4778-5901 ; 0000-0001-6373-1749 ; 0000-0001-7205-4196 ; 0000-0002-4116-5392 ; 0000-0002-9938-5590</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9186693$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9186693$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wang, Jianpeng</creatorcontrib><creatorcontrib>Chen, Wenjie</creatorcontrib><creatorcontrib>Wang, Laili</creatorcontrib><creatorcontrib>Wang, Binyu</creatorcontrib><creatorcontrib>Zhao, Cheng</creatorcontrib><creatorcontrib>Ma, Dingkun</creatorcontrib><creatorcontrib>Yang, Fengtao</creatorcontrib><creatorcontrib>Li, Yan</creatorcontrib><title>A Transient 3-D Thermal Modeling Method for IGBT Modules Considering Uneven Power Losses and Cooling Conditions</title><title>IEEE journal of emerging and selected topics in power electronics</title><addtitle>JESTPE</addtitle><description>Junction temperature is a key parameter for the safe operation of power semiconductor devices in power electronic systems. However, it is difficult to forecast the accurate thermal stress of the device in field use. Consequently, engineers tend to use higher rated devices to maintain excessive margin, resulting in a higher cost. In this article, a transient 3-D thermal modeling method for insulated gate bipolar transistor (IGBT) modules is proposed to obtain accurate temperature distribution considering uneven power losses and cooling conditions. The analytical model of uneven switching energy losses among the parallel IGBT chips in modules is built according to the analysis of device simulation results. The effect of uneven cooling conditions on temperature distribution in IGBT modules is considered by thermal-fluid cosimulation. Furthermore, a hybrid simulation strategy is proposed to obtain the transient thermal behavior in three dimensions. Through appropriate interface design, the power loss model is connected with the finite element model to achieve field-circuit cosimulation with multiple time steps, which takes full consideration of the multiphysical coupling effects among power loss, temperature, and flow fields. Finally, the thermal stresses of IGBT modules under different operating conditions are forecast by the proposed method.</description><subject>Circuits</subject><subject>Electric power distribution</subject><subject>Electronic systems</subject><subject>Energy loss</subject><subject>Finite element analysis</subject><subject>Finite element method</subject><subject>Finite element method (FEM)</subject><subject>insulated gate bipolar transistor (IGBT)</subject><subject>Insulated gate bipolar transistors</subject><subject>Integrated circuit modeling</subject><subject>Junctions</subject><subject>Mathematical model</subject><subject>Mathematical models</subject><subject>Modelling</subject><subject>Modules</subject><subject>multiphysical fields coupling</subject><subject>Power semiconductor devices</subject><subject>Solid modeling</subject><subject>Temperature distribution</subject><subject>Thermal analysis</subject><subject>thermal model</subject><subject>Thermal stress</subject><subject>Thermodynamic properties</subject><subject>Three dimensional models</subject><issn>2168-6777</issn><issn>2168-6785</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1PwkAQhhujiQT5BVw28Vzcj3Y_joiIGIgklvNm251KCXRxWzT-e7fWMJeZZJ5ndvNG0ZjgCSFYPbzO37PNfEIxxROGKeFCXUWD0GXMhUyvL7MQt9GoafY4lKSpEnIQuSnKvKmbCuoWsfgJZTvwR3NAa2fhUNUfaA3tzllUOo-Wi8esW5wP0KCZC5YF3zHbGr6gRhv3DR6tXNOEvaltYNzfjcDaqq2CcRfdlObQwOi_D6Pt8zybvcSrt8VyNl3FBVWijQtlCyWULAzLDZZ5mTBLLdiUMsltKbgk3Ka5oaaw2DKSEJozBYJSrpIiBzaM7vu7J-8-z9C0eu_Ovg5PapqmPJGcKh4o1lOFD5_2UOqTr47G_2iCdReu7sPVXbj6P9xgjXurAoCLoYjkXDH2C3Zcdeg</recordid><startdate>20210801</startdate><enddate>20210801</enddate><creator>Wang, Jianpeng</creator><creator>Chen, Wenjie</creator><creator>Wang, Laili</creator><creator>Wang, Binyu</creator><creator>Zhao, Cheng</creator><creator>Ma, Dingkun</creator><creator>Yang, Fengtao</creator><creator>Li, Yan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-3828-5270</orcidid><orcidid>https://orcid.org/0000-0003-4778-5901</orcidid><orcidid>https://orcid.org/0000-0001-6373-1749</orcidid><orcidid>https://orcid.org/0000-0001-7205-4196</orcidid><orcidid>https://orcid.org/0000-0002-4116-5392</orcidid><orcidid>https://orcid.org/0000-0002-9938-5590</orcidid></search><sort><creationdate>20210801</creationdate><title>A Transient 3-D Thermal Modeling Method for IGBT Modules Considering Uneven Power Losses and Cooling Conditions</title><author>Wang, Jianpeng ; Chen, Wenjie ; Wang, Laili ; Wang, Binyu ; Zhao, Cheng ; Ma, Dingkun ; Yang, Fengtao ; Li, Yan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c297t-c9dc9798ca3ba08bf43d2ded52386df76816d5ba2acd0d31412b39e722694cbe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Circuits</topic><topic>Electric power distribution</topic><topic>Electronic systems</topic><topic>Energy loss</topic><topic>Finite element analysis</topic><topic>Finite element method</topic><topic>Finite element method (FEM)</topic><topic>insulated gate bipolar transistor (IGBT)</topic><topic>Insulated gate bipolar transistors</topic><topic>Integrated circuit modeling</topic><topic>Junctions</topic><topic>Mathematical model</topic><topic>Mathematical models</topic><topic>Modelling</topic><topic>Modules</topic><topic>multiphysical fields coupling</topic><topic>Power semiconductor devices</topic><topic>Solid modeling</topic><topic>Temperature distribution</topic><topic>Thermal analysis</topic><topic>thermal model</topic><topic>Thermal stress</topic><topic>Thermodynamic properties</topic><topic>Three dimensional models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Jianpeng</creatorcontrib><creatorcontrib>Chen, Wenjie</creatorcontrib><creatorcontrib>Wang, Laili</creatorcontrib><creatorcontrib>Wang, Binyu</creatorcontrib><creatorcontrib>Zhao, Cheng</creatorcontrib><creatorcontrib>Ma, Dingkun</creatorcontrib><creatorcontrib>Yang, Fengtao</creatorcontrib><creatorcontrib>Li, Yan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE journal of emerging and selected topics in power electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wang, Jianpeng</au><au>Chen, Wenjie</au><au>Wang, Laili</au><au>Wang, Binyu</au><au>Zhao, Cheng</au><au>Ma, Dingkun</au><au>Yang, Fengtao</au><au>Li, Yan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Transient 3-D Thermal Modeling Method for IGBT Modules Considering Uneven Power Losses and Cooling Conditions</atitle><jtitle>IEEE journal of emerging and selected topics in power electronics</jtitle><stitle>JESTPE</stitle><date>2021-08-01</date><risdate>2021</risdate><volume>9</volume><issue>4</issue><spage>3959</spage><epage>3970</epage><pages>3959-3970</pages><issn>2168-6777</issn><eissn>2168-6785</eissn><coden>IJESN2</coden><abstract>Junction temperature is a key parameter for the safe operation of power semiconductor devices in power electronic systems. However, it is difficult to forecast the accurate thermal stress of the device in field use. Consequently, engineers tend to use higher rated devices to maintain excessive margin, resulting in a higher cost. In this article, a transient 3-D thermal modeling method for insulated gate bipolar transistor (IGBT) modules is proposed to obtain accurate temperature distribution considering uneven power losses and cooling conditions. The analytical model of uneven switching energy losses among the parallel IGBT chips in modules is built according to the analysis of device simulation results. The effect of uneven cooling conditions on temperature distribution in IGBT modules is considered by thermal-fluid cosimulation. Furthermore, a hybrid simulation strategy is proposed to obtain the transient thermal behavior in three dimensions. Through appropriate interface design, the power loss model is connected with the finite element model to achieve field-circuit cosimulation with multiple time steps, which takes full consideration of the multiphysical coupling effects among power loss, temperature, and flow fields. Finally, the thermal stresses of IGBT modules under different operating conditions are forecast by the proposed method.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JESTPE.2020.3021679</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-3828-5270</orcidid><orcidid>https://orcid.org/0000-0003-4778-5901</orcidid><orcidid>https://orcid.org/0000-0001-6373-1749</orcidid><orcidid>https://orcid.org/0000-0001-7205-4196</orcidid><orcidid>https://orcid.org/0000-0002-4116-5392</orcidid><orcidid>https://orcid.org/0000-0002-9938-5590</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2168-6777 |
ispartof | IEEE journal of emerging and selected topics in power electronics, 2021-08, Vol.9 (4), p.3959-3970 |
issn | 2168-6777 2168-6785 |
language | eng |
recordid | cdi_crossref_primary_10_1109_JESTPE_2020_3021679 |
source | IEEE Electronic Library (IEL) |
subjects | Circuits Electric power distribution Electronic systems Energy loss Finite element analysis Finite element method Finite element method (FEM) insulated gate bipolar transistor (IGBT) Insulated gate bipolar transistors Integrated circuit modeling Junctions Mathematical model Mathematical models Modelling Modules multiphysical fields coupling Power semiconductor devices Solid modeling Temperature distribution Thermal analysis thermal model Thermal stress Thermodynamic properties Three dimensional models |
title | A Transient 3-D Thermal Modeling Method for IGBT Modules Considering Uneven Power Losses and Cooling Conditions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T16%3A30%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Transient%203-D%20Thermal%20Modeling%20Method%20for%20IGBT%20Modules%20Considering%20Uneven%20Power%20Losses%20and%20Cooling%20Conditions&rft.jtitle=IEEE%20journal%20of%20emerging%20and%20selected%20topics%20in%20power%20electronics&rft.au=Wang,%20Jianpeng&rft.date=2021-08-01&rft.volume=9&rft.issue=4&rft.spage=3959&rft.epage=3970&rft.pages=3959-3970&rft.issn=2168-6777&rft.eissn=2168-6785&rft.coden=IJESN2&rft_id=info:doi/10.1109/JESTPE.2020.3021679&rft_dat=%3Cproquest_RIE%3E2556486296%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2556486296&rft_id=info:pmid/&rft_ieee_id=9186693&rfr_iscdi=true |