Physical Modeling of Charge Trapping Effects in GaN/Si Devices and Incorporation in the ASM-HEMT Model
In this work, the dynamic behavior of gallium nitride on silicon high electron mobility transistors (GaN/Si HEMT) with carbon doped buffer is modeled using a finite state machine embedded into the core Advanced SPICE Model for High Electron Mobility Transistor (ASM-HEMT). The model is based on the p...
Gespeichert in:
Veröffentlicht in: | IEEE journal of the Electron Devices Society 2021, Vol.9, p.748-755 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 755 |
---|---|
container_issue | |
container_start_page | 748 |
container_title | IEEE journal of the Electron Devices Society |
container_volume | 9 |
creator | Pradhan, Mamta Alomari, Mohammed Moser, Matthias Fahle, Dirk Hahn, Herwig Heuken, Michael Burghartz, Joachim N. |
description | In this work, the dynamic behavior of gallium nitride on silicon high electron mobility transistors (GaN/Si HEMT) with carbon doped buffer is modeled using a finite state machine embedded into the core Advanced SPICE Model for High Electron Mobility Transistor (ASM-HEMT). The model is based on the physics of trapping and detrapping of electrons in carbon at nitrogen-site acceptor trap (denoted here as \text{C}_{N} ) and does not require an equivalent Resistance-Capacitance circuit. The model is validated against three off-state stress drain voltages of 50 V, 100 V, and 150 V using only \text{C}_{N} as trap species. |
doi_str_mv | 10.1109/JEDS.2021.3103596 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JEDS_2021_3103596</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9509414</ieee_id><doaj_id>oai_doaj_org_article_e8048e097cbd4bdabb15a26b5cde3f5d</doaj_id><sourcerecordid>2562316356</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-cde6cd0049c5bfe7affa74a04898472baa4abf123892d5e0f94f3b362d1acac33</originalsourceid><addsrcrecordid>eNpNkVtr20AQhUVpoCHJDwh9WeiznL1L-xgcN3GJ24Cd52X2Zq9xtequUsi_r1SFkHmZ4XDmm4FTVdcELwjB6ubH6m67oJiSBSOYCSU_VeeUyLaWDeOfP8xfqqtSjnislkgl5XkVng6vJVo4oU1y_hS7PUoBLQ-Q9x7tMvT9JK1C8HYoKHboHn7ebCO683-j9QVB59C6syn3KcMQUzd5hoNHt9tN_bDa7GbuZXUW4FT81Vu_qJ6_r3bLh_rx1_16eftYW47pUFvnpXUYc2WFCb6BEKDhgHmrWt5QA8DBBEJZq6gTHgfFAzNMUkfAgmXsolrPXJfgqPscf0N-1Qmi_i-kvNeQh2hPXvt2xHqsGmscNw6MIQKoNGJ8ggXhRta3mdXn9OfFl0Ef00vuxvc1FZIyIpmQo4vMLptTKdmH96sE6ykdPaWjp3T0Wzrjztd5J3rv3_1KYMUJZ_8AcieKiw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2562316356</pqid></control><display><type>article</type><title>Physical Modeling of Charge Trapping Effects in GaN/Si Devices and Incorporation in the ASM-HEMT Model</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Pradhan, Mamta ; Alomari, Mohammed ; Moser, Matthias ; Fahle, Dirk ; Hahn, Herwig ; Heuken, Michael ; Burghartz, Joachim N.</creator><creatorcontrib>Pradhan, Mamta ; Alomari, Mohammed ; Moser, Matthias ; Fahle, Dirk ; Hahn, Herwig ; Heuken, Michael ; Burghartz, Joachim N.</creatorcontrib><description><![CDATA[In this work, the dynamic behavior of gallium nitride on silicon high electron mobility transistors (GaN/Si HEMT) with carbon doped buffer is modeled using a finite state machine embedded into the core Advanced SPICE Model for High Electron Mobility Transistor (ASM-HEMT). The model is based on the physics of trapping and detrapping of electrons in carbon at nitrogen-site acceptor trap (denoted here as <inline-formula> <tex-math notation="LaTeX">\text{C}_{N} </tex-math></inline-formula>) and does not require an equivalent Resistance-Capacitance circuit. The model is validated against three off-state stress drain voltages of 50 V, 100 V, and 150 V using only <inline-formula> <tex-math notation="LaTeX">\text{C}_{N} </tex-math></inline-formula> as trap species.]]></description><identifier>ISSN: 2168-6734</identifier><identifier>EISSN: 2168-6734</identifier><identifier>DOI: 10.1109/JEDS.2021.3103596</identifier><identifier>CODEN: IJEDAC</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>buffer trap modeling ; Carbon ; charge trapping ; Circuits ; Finite state machines ; Gallium nitrides ; GaN HEMT ; HEMTs ; High electron mobility transistors ; Integrated circuit modeling ; physics-based models ; Semiconductor device modeling ; Semiconductor devices ; Silicon ; Stress ; Stress measurement ; Trapping ; Voltage measurement</subject><ispartof>IEEE journal of the Electron Devices Society, 2021, Vol.9, p.748-755</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c402t-cde6cd0049c5bfe7affa74a04898472baa4abf123892d5e0f94f3b362d1acac33</citedby><cites>FETCH-LOGICAL-c402t-cde6cd0049c5bfe7affa74a04898472baa4abf123892d5e0f94f3b362d1acac33</cites><orcidid>0000-0002-6386-5971</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9509414$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Pradhan, Mamta</creatorcontrib><creatorcontrib>Alomari, Mohammed</creatorcontrib><creatorcontrib>Moser, Matthias</creatorcontrib><creatorcontrib>Fahle, Dirk</creatorcontrib><creatorcontrib>Hahn, Herwig</creatorcontrib><creatorcontrib>Heuken, Michael</creatorcontrib><creatorcontrib>Burghartz, Joachim N.</creatorcontrib><title>Physical Modeling of Charge Trapping Effects in GaN/Si Devices and Incorporation in the ASM-HEMT Model</title><title>IEEE journal of the Electron Devices Society</title><addtitle>JEDS</addtitle><description><![CDATA[In this work, the dynamic behavior of gallium nitride on silicon high electron mobility transistors (GaN/Si HEMT) with carbon doped buffer is modeled using a finite state machine embedded into the core Advanced SPICE Model for High Electron Mobility Transistor (ASM-HEMT). The model is based on the physics of trapping and detrapping of electrons in carbon at nitrogen-site acceptor trap (denoted here as <inline-formula> <tex-math notation="LaTeX">\text{C}_{N} </tex-math></inline-formula>) and does not require an equivalent Resistance-Capacitance circuit. The model is validated against three off-state stress drain voltages of 50 V, 100 V, and 150 V using only <inline-formula> <tex-math notation="LaTeX">\text{C}_{N} </tex-math></inline-formula> as trap species.]]></description><subject>buffer trap modeling</subject><subject>Carbon</subject><subject>charge trapping</subject><subject>Circuits</subject><subject>Finite state machines</subject><subject>Gallium nitrides</subject><subject>GaN HEMT</subject><subject>HEMTs</subject><subject>High electron mobility transistors</subject><subject>Integrated circuit modeling</subject><subject>physics-based models</subject><subject>Semiconductor device modeling</subject><subject>Semiconductor devices</subject><subject>Silicon</subject><subject>Stress</subject><subject>Stress measurement</subject><subject>Trapping</subject><subject>Voltage measurement</subject><issn>2168-6734</issn><issn>2168-6734</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkVtr20AQhUVpoCHJDwh9WeiznL1L-xgcN3GJ24Cd52X2Zq9xtequUsi_r1SFkHmZ4XDmm4FTVdcELwjB6ubH6m67oJiSBSOYCSU_VeeUyLaWDeOfP8xfqqtSjnislkgl5XkVng6vJVo4oU1y_hS7PUoBLQ-Q9x7tMvT9JK1C8HYoKHboHn7ebCO683-j9QVB59C6syn3KcMQUzd5hoNHt9tN_bDa7GbuZXUW4FT81Vu_qJ6_r3bLh_rx1_16eftYW47pUFvnpXUYc2WFCb6BEKDhgHmrWt5QA8DBBEJZq6gTHgfFAzNMUkfAgmXsolrPXJfgqPscf0N-1Qmi_i-kvNeQh2hPXvt2xHqsGmscNw6MIQKoNGJ8ggXhRta3mdXn9OfFl0Ef00vuxvc1FZIyIpmQo4vMLptTKdmH96sE6ykdPaWjp3T0Wzrjztd5J3rv3_1KYMUJZ_8AcieKiw</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Pradhan, Mamta</creator><creator>Alomari, Mohammed</creator><creator>Moser, Matthias</creator><creator>Fahle, Dirk</creator><creator>Hahn, Herwig</creator><creator>Heuken, Michael</creator><creator>Burghartz, Joachim N.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-6386-5971</orcidid></search><sort><creationdate>2021</creationdate><title>Physical Modeling of Charge Trapping Effects in GaN/Si Devices and Incorporation in the ASM-HEMT Model</title><author>Pradhan, Mamta ; Alomari, Mohammed ; Moser, Matthias ; Fahle, Dirk ; Hahn, Herwig ; Heuken, Michael ; Burghartz, Joachim N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-cde6cd0049c5bfe7affa74a04898472baa4abf123892d5e0f94f3b362d1acac33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>buffer trap modeling</topic><topic>Carbon</topic><topic>charge trapping</topic><topic>Circuits</topic><topic>Finite state machines</topic><topic>Gallium nitrides</topic><topic>GaN HEMT</topic><topic>HEMTs</topic><topic>High electron mobility transistors</topic><topic>Integrated circuit modeling</topic><topic>physics-based models</topic><topic>Semiconductor device modeling</topic><topic>Semiconductor devices</topic><topic>Silicon</topic><topic>Stress</topic><topic>Stress measurement</topic><topic>Trapping</topic><topic>Voltage measurement</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pradhan, Mamta</creatorcontrib><creatorcontrib>Alomari, Mohammed</creatorcontrib><creatorcontrib>Moser, Matthias</creatorcontrib><creatorcontrib>Fahle, Dirk</creatorcontrib><creatorcontrib>Hahn, Herwig</creatorcontrib><creatorcontrib>Heuken, Michael</creatorcontrib><creatorcontrib>Burghartz, Joachim N.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE journal of the Electron Devices Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pradhan, Mamta</au><au>Alomari, Mohammed</au><au>Moser, Matthias</au><au>Fahle, Dirk</au><au>Hahn, Herwig</au><au>Heuken, Michael</au><au>Burghartz, Joachim N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Physical Modeling of Charge Trapping Effects in GaN/Si Devices and Incorporation in the ASM-HEMT Model</atitle><jtitle>IEEE journal of the Electron Devices Society</jtitle><stitle>JEDS</stitle><date>2021</date><risdate>2021</risdate><volume>9</volume><spage>748</spage><epage>755</epage><pages>748-755</pages><issn>2168-6734</issn><eissn>2168-6734</eissn><coden>IJEDAC</coden><abstract><![CDATA[In this work, the dynamic behavior of gallium nitride on silicon high electron mobility transistors (GaN/Si HEMT) with carbon doped buffer is modeled using a finite state machine embedded into the core Advanced SPICE Model for High Electron Mobility Transistor (ASM-HEMT). The model is based on the physics of trapping and detrapping of electrons in carbon at nitrogen-site acceptor trap (denoted here as <inline-formula> <tex-math notation="LaTeX">\text{C}_{N} </tex-math></inline-formula>) and does not require an equivalent Resistance-Capacitance circuit. The model is validated against three off-state stress drain voltages of 50 V, 100 V, and 150 V using only <inline-formula> <tex-math notation="LaTeX">\text{C}_{N} </tex-math></inline-formula> as trap species.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JEDS.2021.3103596</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-6386-5971</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2168-6734 |
ispartof | IEEE journal of the Electron Devices Society, 2021, Vol.9, p.748-755 |
issn | 2168-6734 2168-6734 |
language | eng |
recordid | cdi_crossref_primary_10_1109_JEDS_2021_3103596 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals |
subjects | buffer trap modeling Carbon charge trapping Circuits Finite state machines Gallium nitrides GaN HEMT HEMTs High electron mobility transistors Integrated circuit modeling physics-based models Semiconductor device modeling Semiconductor devices Silicon Stress Stress measurement Trapping Voltage measurement |
title | Physical Modeling of Charge Trapping Effects in GaN/Si Devices and Incorporation in the ASM-HEMT Model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T06%3A26%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Physical%20Modeling%20of%20Charge%20Trapping%20Effects%20in%20GaN/Si%20Devices%20and%20Incorporation%20in%20the%20ASM-HEMT%20Model&rft.jtitle=IEEE%20journal%20of%20the%20Electron%20Devices%20Society&rft.au=Pradhan,%20Mamta&rft.date=2021&rft.volume=9&rft.spage=748&rft.epage=755&rft.pages=748-755&rft.issn=2168-6734&rft.eissn=2168-6734&rft.coden=IJEDAC&rft_id=info:doi/10.1109/JEDS.2021.3103596&rft_dat=%3Cproquest_cross%3E2562316356%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2562316356&rft_id=info:pmid/&rft_ieee_id=9509414&rft_doaj_id=oai_doaj_org_article_e8048e097cbd4bdabb15a26b5cde3f5d&rfr_iscdi=true |