Physical Modeling of Charge Trapping Effects in GaN/Si Devices and Incorporation in the ASM-HEMT Model

In this work, the dynamic behavior of gallium nitride on silicon high electron mobility transistors (GaN/Si HEMT) with carbon doped buffer is modeled using a finite state machine embedded into the core Advanced SPICE Model for High Electron Mobility Transistor (ASM-HEMT). The model is based on the p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of the Electron Devices Society 2021, Vol.9, p.748-755
Hauptverfasser: Pradhan, Mamta, Alomari, Mohammed, Moser, Matthias, Fahle, Dirk, Hahn, Herwig, Heuken, Michael, Burghartz, Joachim N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 755
container_issue
container_start_page 748
container_title IEEE journal of the Electron Devices Society
container_volume 9
creator Pradhan, Mamta
Alomari, Mohammed
Moser, Matthias
Fahle, Dirk
Hahn, Herwig
Heuken, Michael
Burghartz, Joachim N.
description In this work, the dynamic behavior of gallium nitride on silicon high electron mobility transistors (GaN/Si HEMT) with carbon doped buffer is modeled using a finite state machine embedded into the core Advanced SPICE Model for High Electron Mobility Transistor (ASM-HEMT). The model is based on the physics of trapping and detrapping of electrons in carbon at nitrogen-site acceptor trap (denoted here as \text{C}_{N} ) and does not require an equivalent Resistance-Capacitance circuit. The model is validated against three off-state stress drain voltages of 50 V, 100 V, and 150 V using only \text{C}_{N} as trap species.
doi_str_mv 10.1109/JEDS.2021.3103596
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JEDS_2021_3103596</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9509414</ieee_id><doaj_id>oai_doaj_org_article_e8048e097cbd4bdabb15a26b5cde3f5d</doaj_id><sourcerecordid>2562316356</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-cde6cd0049c5bfe7affa74a04898472baa4abf123892d5e0f94f3b362d1acac33</originalsourceid><addsrcrecordid>eNpNkVtr20AQhUVpoCHJDwh9WeiznL1L-xgcN3GJ24Cd52X2Zq9xtequUsi_r1SFkHmZ4XDmm4FTVdcELwjB6ubH6m67oJiSBSOYCSU_VeeUyLaWDeOfP8xfqqtSjnislkgl5XkVng6vJVo4oU1y_hS7PUoBLQ-Q9x7tMvT9JK1C8HYoKHboHn7ebCO683-j9QVB59C6syn3KcMQUzd5hoNHt9tN_bDa7GbuZXUW4FT81Vu_qJ6_r3bLh_rx1_16eftYW47pUFvnpXUYc2WFCb6BEKDhgHmrWt5QA8DBBEJZq6gTHgfFAzNMUkfAgmXsolrPXJfgqPscf0N-1Qmi_i-kvNeQh2hPXvt2xHqsGmscNw6MIQKoNGJ8ggXhRta3mdXn9OfFl0Ef00vuxvc1FZIyIpmQo4vMLptTKdmH96sE6ykdPaWjp3T0Wzrjztd5J3rv3_1KYMUJZ_8AcieKiw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2562316356</pqid></control><display><type>article</type><title>Physical Modeling of Charge Trapping Effects in GaN/Si Devices and Incorporation in the ASM-HEMT Model</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Pradhan, Mamta ; Alomari, Mohammed ; Moser, Matthias ; Fahle, Dirk ; Hahn, Herwig ; Heuken, Michael ; Burghartz, Joachim N.</creator><creatorcontrib>Pradhan, Mamta ; Alomari, Mohammed ; Moser, Matthias ; Fahle, Dirk ; Hahn, Herwig ; Heuken, Michael ; Burghartz, Joachim N.</creatorcontrib><description><![CDATA[In this work, the dynamic behavior of gallium nitride on silicon high electron mobility transistors (GaN/Si HEMT) with carbon doped buffer is modeled using a finite state machine embedded into the core Advanced SPICE Model for High Electron Mobility Transistor (ASM-HEMT). The model is based on the physics of trapping and detrapping of electrons in carbon at nitrogen-site acceptor trap (denoted here as <inline-formula> <tex-math notation="LaTeX">\text{C}_{N} </tex-math></inline-formula>) and does not require an equivalent Resistance-Capacitance circuit. The model is validated against three off-state stress drain voltages of 50 V, 100 V, and 150 V using only <inline-formula> <tex-math notation="LaTeX">\text{C}_{N} </tex-math></inline-formula> as trap species.]]></description><identifier>ISSN: 2168-6734</identifier><identifier>EISSN: 2168-6734</identifier><identifier>DOI: 10.1109/JEDS.2021.3103596</identifier><identifier>CODEN: IJEDAC</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>buffer trap modeling ; Carbon ; charge trapping ; Circuits ; Finite state machines ; Gallium nitrides ; GaN HEMT ; HEMTs ; High electron mobility transistors ; Integrated circuit modeling ; physics-based models ; Semiconductor device modeling ; Semiconductor devices ; Silicon ; Stress ; Stress measurement ; Trapping ; Voltage measurement</subject><ispartof>IEEE journal of the Electron Devices Society, 2021, Vol.9, p.748-755</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c402t-cde6cd0049c5bfe7affa74a04898472baa4abf123892d5e0f94f3b362d1acac33</citedby><cites>FETCH-LOGICAL-c402t-cde6cd0049c5bfe7affa74a04898472baa4abf123892d5e0f94f3b362d1acac33</cites><orcidid>0000-0002-6386-5971</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9509414$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Pradhan, Mamta</creatorcontrib><creatorcontrib>Alomari, Mohammed</creatorcontrib><creatorcontrib>Moser, Matthias</creatorcontrib><creatorcontrib>Fahle, Dirk</creatorcontrib><creatorcontrib>Hahn, Herwig</creatorcontrib><creatorcontrib>Heuken, Michael</creatorcontrib><creatorcontrib>Burghartz, Joachim N.</creatorcontrib><title>Physical Modeling of Charge Trapping Effects in GaN/Si Devices and Incorporation in the ASM-HEMT Model</title><title>IEEE journal of the Electron Devices Society</title><addtitle>JEDS</addtitle><description><![CDATA[In this work, the dynamic behavior of gallium nitride on silicon high electron mobility transistors (GaN/Si HEMT) with carbon doped buffer is modeled using a finite state machine embedded into the core Advanced SPICE Model for High Electron Mobility Transistor (ASM-HEMT). The model is based on the physics of trapping and detrapping of electrons in carbon at nitrogen-site acceptor trap (denoted here as <inline-formula> <tex-math notation="LaTeX">\text{C}_{N} </tex-math></inline-formula>) and does not require an equivalent Resistance-Capacitance circuit. The model is validated against three off-state stress drain voltages of 50 V, 100 V, and 150 V using only <inline-formula> <tex-math notation="LaTeX">\text{C}_{N} </tex-math></inline-formula> as trap species.]]></description><subject>buffer trap modeling</subject><subject>Carbon</subject><subject>charge trapping</subject><subject>Circuits</subject><subject>Finite state machines</subject><subject>Gallium nitrides</subject><subject>GaN HEMT</subject><subject>HEMTs</subject><subject>High electron mobility transistors</subject><subject>Integrated circuit modeling</subject><subject>physics-based models</subject><subject>Semiconductor device modeling</subject><subject>Semiconductor devices</subject><subject>Silicon</subject><subject>Stress</subject><subject>Stress measurement</subject><subject>Trapping</subject><subject>Voltage measurement</subject><issn>2168-6734</issn><issn>2168-6734</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkVtr20AQhUVpoCHJDwh9WeiznL1L-xgcN3GJ24Cd52X2Zq9xtequUsi_r1SFkHmZ4XDmm4FTVdcELwjB6ubH6m67oJiSBSOYCSU_VeeUyLaWDeOfP8xfqqtSjnislkgl5XkVng6vJVo4oU1y_hS7PUoBLQ-Q9x7tMvT9JK1C8HYoKHboHn7ebCO683-j9QVB59C6syn3KcMQUzd5hoNHt9tN_bDa7GbuZXUW4FT81Vu_qJ6_r3bLh_rx1_16eftYW47pUFvnpXUYc2WFCb6BEKDhgHmrWt5QA8DBBEJZq6gTHgfFAzNMUkfAgmXsolrPXJfgqPscf0N-1Qmi_i-kvNeQh2hPXvt2xHqsGmscNw6MIQKoNGJ8ggXhRta3mdXn9OfFl0Ef00vuxvc1FZIyIpmQo4vMLptTKdmH96sE6ykdPaWjp3T0Wzrjztd5J3rv3_1KYMUJZ_8AcieKiw</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Pradhan, Mamta</creator><creator>Alomari, Mohammed</creator><creator>Moser, Matthias</creator><creator>Fahle, Dirk</creator><creator>Hahn, Herwig</creator><creator>Heuken, Michael</creator><creator>Burghartz, Joachim N.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-6386-5971</orcidid></search><sort><creationdate>2021</creationdate><title>Physical Modeling of Charge Trapping Effects in GaN/Si Devices and Incorporation in the ASM-HEMT Model</title><author>Pradhan, Mamta ; Alomari, Mohammed ; Moser, Matthias ; Fahle, Dirk ; Hahn, Herwig ; Heuken, Michael ; Burghartz, Joachim N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-cde6cd0049c5bfe7affa74a04898472baa4abf123892d5e0f94f3b362d1acac33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>buffer trap modeling</topic><topic>Carbon</topic><topic>charge trapping</topic><topic>Circuits</topic><topic>Finite state machines</topic><topic>Gallium nitrides</topic><topic>GaN HEMT</topic><topic>HEMTs</topic><topic>High electron mobility transistors</topic><topic>Integrated circuit modeling</topic><topic>physics-based models</topic><topic>Semiconductor device modeling</topic><topic>Semiconductor devices</topic><topic>Silicon</topic><topic>Stress</topic><topic>Stress measurement</topic><topic>Trapping</topic><topic>Voltage measurement</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pradhan, Mamta</creatorcontrib><creatorcontrib>Alomari, Mohammed</creatorcontrib><creatorcontrib>Moser, Matthias</creatorcontrib><creatorcontrib>Fahle, Dirk</creatorcontrib><creatorcontrib>Hahn, Herwig</creatorcontrib><creatorcontrib>Heuken, Michael</creatorcontrib><creatorcontrib>Burghartz, Joachim N.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE journal of the Electron Devices Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pradhan, Mamta</au><au>Alomari, Mohammed</au><au>Moser, Matthias</au><au>Fahle, Dirk</au><au>Hahn, Herwig</au><au>Heuken, Michael</au><au>Burghartz, Joachim N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Physical Modeling of Charge Trapping Effects in GaN/Si Devices and Incorporation in the ASM-HEMT Model</atitle><jtitle>IEEE journal of the Electron Devices Society</jtitle><stitle>JEDS</stitle><date>2021</date><risdate>2021</risdate><volume>9</volume><spage>748</spage><epage>755</epage><pages>748-755</pages><issn>2168-6734</issn><eissn>2168-6734</eissn><coden>IJEDAC</coden><abstract><![CDATA[In this work, the dynamic behavior of gallium nitride on silicon high electron mobility transistors (GaN/Si HEMT) with carbon doped buffer is modeled using a finite state machine embedded into the core Advanced SPICE Model for High Electron Mobility Transistor (ASM-HEMT). The model is based on the physics of trapping and detrapping of electrons in carbon at nitrogen-site acceptor trap (denoted here as <inline-formula> <tex-math notation="LaTeX">\text{C}_{N} </tex-math></inline-formula>) and does not require an equivalent Resistance-Capacitance circuit. The model is validated against three off-state stress drain voltages of 50 V, 100 V, and 150 V using only <inline-formula> <tex-math notation="LaTeX">\text{C}_{N} </tex-math></inline-formula> as trap species.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JEDS.2021.3103596</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-6386-5971</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2168-6734
ispartof IEEE journal of the Electron Devices Society, 2021, Vol.9, p.748-755
issn 2168-6734
2168-6734
language eng
recordid cdi_crossref_primary_10_1109_JEDS_2021_3103596
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects buffer trap modeling
Carbon
charge trapping
Circuits
Finite state machines
Gallium nitrides
GaN HEMT
HEMTs
High electron mobility transistors
Integrated circuit modeling
physics-based models
Semiconductor device modeling
Semiconductor devices
Silicon
Stress
Stress measurement
Trapping
Voltage measurement
title Physical Modeling of Charge Trapping Effects in GaN/Si Devices and Incorporation in the ASM-HEMT Model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T06%3A26%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Physical%20Modeling%20of%20Charge%20Trapping%20Effects%20in%20GaN/Si%20Devices%20and%20Incorporation%20in%20the%20ASM-HEMT%20Model&rft.jtitle=IEEE%20journal%20of%20the%20Electron%20Devices%20Society&rft.au=Pradhan,%20Mamta&rft.date=2021&rft.volume=9&rft.spage=748&rft.epage=755&rft.pages=748-755&rft.issn=2168-6734&rft.eissn=2168-6734&rft.coden=IJEDAC&rft_id=info:doi/10.1109/JEDS.2021.3103596&rft_dat=%3Cproquest_cross%3E2562316356%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2562316356&rft_id=info:pmid/&rft_ieee_id=9509414&rft_doaj_id=oai_doaj_org_article_e8048e097cbd4bdabb15a26b5cde3f5d&rfr_iscdi=true