Self-Heating in FDSOI UTBB MOSFETs at Cryogenic Temperatures and its Effect on Analog Figures of Merit

This work studies the self-heating (SH) effect in ultra-thin body ultra-thin buried oxide (UTBB) FDSOI MOSFETs at cryogenic temperatures down to 77 K. S-parameter measurements in a wide frequency range, with the so-called RF technique, are employed to assess SH parameters and related variation of an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of the Electron Devices Society 2020, Vol.8, p.789-796
Hauptverfasser: Nyssens, Lucas, Halder, Arka, Esfeh, Babak Kazemi, Planes, Nicolas, Haond, Michel, Flandre, Denis, Raskin, Jean-Pierre, Kilchytska, Valeriya
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 796
container_issue
container_start_page 789
container_title IEEE journal of the Electron Devices Society
container_volume 8
creator Nyssens, Lucas
Halder, Arka
Esfeh, Babak Kazemi
Planes, Nicolas
Haond, Michel
Flandre, Denis
Raskin, Jean-Pierre
Kilchytska, Valeriya
description This work studies the self-heating (SH) effect in ultra-thin body ultra-thin buried oxide (UTBB) FDSOI MOSFETs at cryogenic temperatures down to 77 K. S-parameter measurements in a wide frequency range, with the so-called RF technique, are employed to assess SH parameters and related variation of analog figures of merit (FoMs) at different temperatures. Contrary to the expectations, the effect of self-heating on analog FoMs is slightly weaker at cryogenic temperatures with respect to room-temperature case. The extracted thermal resistance and channel temperature rise at 300 K and 77 K in short-channel devices are of the same order of magnitude. The observed increase in SH characteristic frequency with temperature reduction emphasizes the advantage of the RF technique for the fair analysis of SH-related features in advanced technologies at cryogenic temperatures.
doi_str_mv 10.1109/JEDS.2020.2999632
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JEDS_2020_2999632</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9107227</ieee_id><doaj_id>oai_doaj_org_article_0272cd05220a4e07b332e6db4491c173</doaj_id><sourcerecordid>2434119354</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-2de83bbaa35497b326e3b2c978375e3d61b7c5eefcb697118f6c2f9f9d45015e3</originalsourceid><addsrcrecordid>eNpNkUFvGyEQhVdRKzVK8wOqXpByXheGXViOiWMnrhL5YOeMWHZYYTmLC_iQfx8cR1Hnwmj45j3Qq6pfjM4Yo-rP38X9ZgYU6AyUUoLDRXUJTHS1kLz59l__o7pOaUdLdUwoIS4rt8G9qx_RZD-NxE9keb9Zr8jL9u6OPK83y8U2EZPJPL6FESdvyRZfDxhNPkYsN9NAfE5k4RzaTMJEbiezDyNZ-vEDCI48Y_T5Z_XdmX3C68_zqnop0vPH-mn9sJrfPtW2oZBrGLDjfW8Mbxslew4CeQ9WyY7LFvkgWC9ti-hsL5RkrHPCglNODU1LWSGuqtVZdwhmpw_Rv5r4poPx-mMQ4qhNzN7uUVOQYAfaAlDTIC1uHFAMfdMoZpnkRevmrHWI4d8RU9a7cIzlf0lDwxvGVHllodiZsjGkFNF9uTKqT-noUzr6lI7-TKfs_D7veET84hWjEkDydwG7h8c</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2434119354</pqid></control><display><type>article</type><title>Self-Heating in FDSOI UTBB MOSFETs at Cryogenic Temperatures and its Effect on Analog Figures of Merit</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Nyssens, Lucas ; Halder, Arka ; Esfeh, Babak Kazemi ; Planes, Nicolas ; Haond, Michel ; Flandre, Denis ; Raskin, Jean-Pierre ; Kilchytska, Valeriya</creator><creatorcontrib>Nyssens, Lucas ; Halder, Arka ; Esfeh, Babak Kazemi ; Planes, Nicolas ; Haond, Michel ; Flandre, Denis ; Raskin, Jean-Pierre ; Kilchytska, Valeriya</creatorcontrib><description>This work studies the self-heating (SH) effect in ultra-thin body ultra-thin buried oxide (UTBB) FDSOI MOSFETs at cryogenic temperatures down to 77 K. S-parameter measurements in a wide frequency range, with the so-called RF technique, are employed to assess SH parameters and related variation of analog figures of merit (FoMs) at different temperatures. Contrary to the expectations, the effect of self-heating on analog FoMs is slightly weaker at cryogenic temperatures with respect to room-temperature case. The extracted thermal resistance and channel temperature rise at 300 K and 77 K in short-channel devices are of the same order of magnitude. The observed increase in SH characteristic frequency with temperature reduction emphasizes the advantage of the RF technique for the fair analysis of SH-related features in advanced technologies at cryogenic temperatures.</description><identifier>ISSN: 2168-6734</identifier><identifier>EISSN: 2168-6734</identifier><identifier>DOI: 10.1109/JEDS.2020.2999632</identifier><identifier>CODEN: IJEDAC</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>analog figures of merit ; Cryogenic engineering ; Cryogenic temperature ; Cryogenics ; FDSOI ; Frequency measurement ; Frequency ranges ; Heating ; MOSFET ; MOSFETs ; Parameters ; Radio frequency ; Room temperature ; S-parameters ; self-heating ; Silicon-on-insulator ; Thermal resistance ; Thin bodies ; UTBB</subject><ispartof>IEEE journal of the Electron Devices Society, 2020, Vol.8, p.789-796</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c402t-2de83bbaa35497b326e3b2c978375e3d61b7c5eefcb697118f6c2f9f9d45015e3</citedby><cites>FETCH-LOGICAL-c402t-2de83bbaa35497b326e3b2c978375e3d61b7c5eefcb697118f6c2f9f9d45015e3</cites><orcidid>0000-0001-9715-9699 ; 0000-0002-3104-890X ; 0000-0001-5298-5196 ; 0000-0003-3996-7553</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9107227$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,861,2096,4010,27614,27904,27905,27906,54914</link.rule.ids></links><search><creatorcontrib>Nyssens, Lucas</creatorcontrib><creatorcontrib>Halder, Arka</creatorcontrib><creatorcontrib>Esfeh, Babak Kazemi</creatorcontrib><creatorcontrib>Planes, Nicolas</creatorcontrib><creatorcontrib>Haond, Michel</creatorcontrib><creatorcontrib>Flandre, Denis</creatorcontrib><creatorcontrib>Raskin, Jean-Pierre</creatorcontrib><creatorcontrib>Kilchytska, Valeriya</creatorcontrib><title>Self-Heating in FDSOI UTBB MOSFETs at Cryogenic Temperatures and its Effect on Analog Figures of Merit</title><title>IEEE journal of the Electron Devices Society</title><addtitle>JEDS</addtitle><description>This work studies the self-heating (SH) effect in ultra-thin body ultra-thin buried oxide (UTBB) FDSOI MOSFETs at cryogenic temperatures down to 77 K. S-parameter measurements in a wide frequency range, with the so-called RF technique, are employed to assess SH parameters and related variation of analog figures of merit (FoMs) at different temperatures. Contrary to the expectations, the effect of self-heating on analog FoMs is slightly weaker at cryogenic temperatures with respect to room-temperature case. The extracted thermal resistance and channel temperature rise at 300 K and 77 K in short-channel devices are of the same order of magnitude. The observed increase in SH characteristic frequency with temperature reduction emphasizes the advantage of the RF technique for the fair analysis of SH-related features in advanced technologies at cryogenic temperatures.</description><subject>analog figures of merit</subject><subject>Cryogenic engineering</subject><subject>Cryogenic temperature</subject><subject>Cryogenics</subject><subject>FDSOI</subject><subject>Frequency measurement</subject><subject>Frequency ranges</subject><subject>Heating</subject><subject>MOSFET</subject><subject>MOSFETs</subject><subject>Parameters</subject><subject>Radio frequency</subject><subject>Room temperature</subject><subject>S-parameters</subject><subject>self-heating</subject><subject>Silicon-on-insulator</subject><subject>Thermal resistance</subject><subject>Thin bodies</subject><subject>UTBB</subject><issn>2168-6734</issn><issn>2168-6734</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkUFvGyEQhVdRKzVK8wOqXpByXheGXViOiWMnrhL5YOeMWHZYYTmLC_iQfx8cR1Hnwmj45j3Qq6pfjM4Yo-rP38X9ZgYU6AyUUoLDRXUJTHS1kLz59l__o7pOaUdLdUwoIS4rt8G9qx_RZD-NxE9keb9Zr8jL9u6OPK83y8U2EZPJPL6FESdvyRZfDxhNPkYsN9NAfE5k4RzaTMJEbiezDyNZ-vEDCI48Y_T5Z_XdmX3C68_zqnop0vPH-mn9sJrfPtW2oZBrGLDjfW8Mbxslew4CeQ9WyY7LFvkgWC9ti-hsL5RkrHPCglNODU1LWSGuqtVZdwhmpw_Rv5r4poPx-mMQ4qhNzN7uUVOQYAfaAlDTIC1uHFAMfdMoZpnkRevmrHWI4d8RU9a7cIzlf0lDwxvGVHllodiZsjGkFNF9uTKqT-noUzr6lI7-TKfs_D7veET84hWjEkDydwG7h8c</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Nyssens, Lucas</creator><creator>Halder, Arka</creator><creator>Esfeh, Babak Kazemi</creator><creator>Planes, Nicolas</creator><creator>Haond, Michel</creator><creator>Flandre, Denis</creator><creator>Raskin, Jean-Pierre</creator><creator>Kilchytska, Valeriya</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-9715-9699</orcidid><orcidid>https://orcid.org/0000-0002-3104-890X</orcidid><orcidid>https://orcid.org/0000-0001-5298-5196</orcidid><orcidid>https://orcid.org/0000-0003-3996-7553</orcidid></search><sort><creationdate>2020</creationdate><title>Self-Heating in FDSOI UTBB MOSFETs at Cryogenic Temperatures and its Effect on Analog Figures of Merit</title><author>Nyssens, Lucas ; Halder, Arka ; Esfeh, Babak Kazemi ; Planes, Nicolas ; Haond, Michel ; Flandre, Denis ; Raskin, Jean-Pierre ; Kilchytska, Valeriya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-2de83bbaa35497b326e3b2c978375e3d61b7c5eefcb697118f6c2f9f9d45015e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>analog figures of merit</topic><topic>Cryogenic engineering</topic><topic>Cryogenic temperature</topic><topic>Cryogenics</topic><topic>FDSOI</topic><topic>Frequency measurement</topic><topic>Frequency ranges</topic><topic>Heating</topic><topic>MOSFET</topic><topic>MOSFETs</topic><topic>Parameters</topic><topic>Radio frequency</topic><topic>Room temperature</topic><topic>S-parameters</topic><topic>self-heating</topic><topic>Silicon-on-insulator</topic><topic>Thermal resistance</topic><topic>Thin bodies</topic><topic>UTBB</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nyssens, Lucas</creatorcontrib><creatorcontrib>Halder, Arka</creatorcontrib><creatorcontrib>Esfeh, Babak Kazemi</creatorcontrib><creatorcontrib>Planes, Nicolas</creatorcontrib><creatorcontrib>Haond, Michel</creatorcontrib><creatorcontrib>Flandre, Denis</creatorcontrib><creatorcontrib>Raskin, Jean-Pierre</creatorcontrib><creatorcontrib>Kilchytska, Valeriya</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE journal of the Electron Devices Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nyssens, Lucas</au><au>Halder, Arka</au><au>Esfeh, Babak Kazemi</au><au>Planes, Nicolas</au><au>Haond, Michel</au><au>Flandre, Denis</au><au>Raskin, Jean-Pierre</au><au>Kilchytska, Valeriya</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Self-Heating in FDSOI UTBB MOSFETs at Cryogenic Temperatures and its Effect on Analog Figures of Merit</atitle><jtitle>IEEE journal of the Electron Devices Society</jtitle><stitle>JEDS</stitle><date>2020</date><risdate>2020</risdate><volume>8</volume><spage>789</spage><epage>796</epage><pages>789-796</pages><issn>2168-6734</issn><eissn>2168-6734</eissn><coden>IJEDAC</coden><abstract>This work studies the self-heating (SH) effect in ultra-thin body ultra-thin buried oxide (UTBB) FDSOI MOSFETs at cryogenic temperatures down to 77 K. S-parameter measurements in a wide frequency range, with the so-called RF technique, are employed to assess SH parameters and related variation of analog figures of merit (FoMs) at different temperatures. Contrary to the expectations, the effect of self-heating on analog FoMs is slightly weaker at cryogenic temperatures with respect to room-temperature case. The extracted thermal resistance and channel temperature rise at 300 K and 77 K in short-channel devices are of the same order of magnitude. The observed increase in SH characteristic frequency with temperature reduction emphasizes the advantage of the RF technique for the fair analysis of SH-related features in advanced technologies at cryogenic temperatures.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JEDS.2020.2999632</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-9715-9699</orcidid><orcidid>https://orcid.org/0000-0002-3104-890X</orcidid><orcidid>https://orcid.org/0000-0001-5298-5196</orcidid><orcidid>https://orcid.org/0000-0003-3996-7553</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2168-6734
ispartof IEEE journal of the Electron Devices Society, 2020, Vol.8, p.789-796
issn 2168-6734
2168-6734
language eng
recordid cdi_crossref_primary_10_1109_JEDS_2020_2999632
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects analog figures of merit
Cryogenic engineering
Cryogenic temperature
Cryogenics
FDSOI
Frequency measurement
Frequency ranges
Heating
MOSFET
MOSFETs
Parameters
Radio frequency
Room temperature
S-parameters
self-heating
Silicon-on-insulator
Thermal resistance
Thin bodies
UTBB
title Self-Heating in FDSOI UTBB MOSFETs at Cryogenic Temperatures and its Effect on Analog Figures of Merit
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T11%3A17%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Self-Heating%20in%20FDSOI%20UTBB%20MOSFETs%20at%20Cryogenic%20Temperatures%20and%20its%20Effect%20on%20Analog%20Figures%20of%20Merit&rft.jtitle=IEEE%20journal%20of%20the%20Electron%20Devices%20Society&rft.au=Nyssens,%20Lucas&rft.date=2020&rft.volume=8&rft.spage=789&rft.epage=796&rft.pages=789-796&rft.issn=2168-6734&rft.eissn=2168-6734&rft.coden=IJEDAC&rft_id=info:doi/10.1109/JEDS.2020.2999632&rft_dat=%3Cproquest_cross%3E2434119354%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2434119354&rft_id=info:pmid/&rft_ieee_id=9107227&rft_doaj_id=oai_doaj_org_article_0272cd05220a4e07b332e6db4491c173&rfr_iscdi=true