User-Oriented Piezoelectric Force Sensing and Artificial Neural Networks in Interactive Displays

Force touch based interactivity has been widely integrated into displays equipped in most of smart electronic systems such as smartphones and tablets. This paper reports on application of artificial neural networks to analyze data generated from piezoelectric based touch panels for providing customi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of the Electron Devices Society 2018-01, Vol.6, p.766-773
Hauptverfasser: Gao, Shuo, Duan, Jifang, Kitsos, Vasileios, Selviah, David R., Nathan, Arokia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 773
container_issue
container_start_page 766
container_title IEEE journal of the Electron Devices Society
container_volume 6
creator Gao, Shuo
Duan, Jifang
Kitsos, Vasileios
Selviah, David R.
Nathan, Arokia
description Force touch based interactivity has been widely integrated into displays equipped in most of smart electronic systems such as smartphones and tablets. This paper reports on application of artificial neural networks to analyze data generated from piezoelectric based touch panels for providing customized force sensing operation. Based on the experimental results, high force sensing accuracy (93.3%) is achieved when three force levels are used. Two-dimensional sensing, also achieved with the proposed technique, with high detection accuracy (95.2%). The technique presented here not only achieves high accuracy, but also allows users to define the range of force levels through behavioral means thus enhancing interactivity experience.
doi_str_mv 10.1109/JEDS.2018.2848917
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JEDS_2018_2848917</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8391712</ieee_id><doaj_id>oai_doaj_org_article_a8240dcd47164ab0a323cc8d392eaa5e</doaj_id><sourcerecordid>2299132667</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-1410ba053fcfca6e2822105f11beda9f112c8764f32aa34f5240f54b4c8b7dad3</originalsourceid><addsrcrecordid>eNpNUU1PHDEMjapWKtryA6peInGeJV-TyRwRX12ESiXKOfUkDsp2mGyTWSr49WRZhOrLs2y_Z8uPkK-cLTln_fHV-dntUjBulsIo0_PuAzkQXJtGd1J9_C__TA5LWbMahute6wPy-65gbm5yxGlGT39GfE44optzdPQiZYf0FqcSp3sKk6cneY4huggj_YHb_Arzv5T_FBonuqoaGdwcH5GexbIZ4al8IZ8CjAUP33BB7i7Of51-b65vLlenJ9eNU0zMDVecDcBaGVxwoFEYIThrA-cDeugrCmc6rYIUAFKFVigWWjUoZ4bOg5cLstrr-gRru8nxAfKTTRDtayHlewv1eDeiBVPJ3nnVca1gYCCFdM542QsEaLFqHe21Njn93WKZ7Tpt81TPt0L0PZdC128uCN9PuZxKyRjet3Jmd77YnS9254t986Vyvu05ERHf542sPS7kC9M3iXo</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2299132667</pqid></control><display><type>article</type><title>User-Oriented Piezoelectric Force Sensing and Artificial Neural Networks in Interactive Displays</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Gao, Shuo ; Duan, Jifang ; Kitsos, Vasileios ; Selviah, David R. ; Nathan, Arokia</creator><creatorcontrib>Gao, Shuo ; Duan, Jifang ; Kitsos, Vasileios ; Selviah, David R. ; Nathan, Arokia</creatorcontrib><description>Force touch based interactivity has been widely integrated into displays equipped in most of smart electronic systems such as smartphones and tablets. This paper reports on application of artificial neural networks to analyze data generated from piezoelectric based touch panels for providing customized force sensing operation. Based on the experimental results, high force sensing accuracy (93.3%) is achieved when three force levels are used. Two-dimensional sensing, also achieved with the proposed technique, with high detection accuracy (95.2%). The technique presented here not only achieves high accuracy, but also allows users to define the range of force levels through behavioral means thus enhancing interactivity experience.</description><identifier>ISSN: 2168-6734</identifier><identifier>EISSN: 2168-6734</identifier><identifier>DOI: 10.1109/JEDS.2018.2848917</identifier><identifier>CODEN: IJEDAC</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Accuracy ; Artificial neural network ; Artificial neural networks ; customized force sensing ; Detection ; detection accuracy ; Displays ; Electrical engineering ; Electron devices ; Electronic systems ; Force ; interactive display ; Neural networks ; Object recognition ; Piezoelectric materials ; Piezoelectricity ; Sensors ; Smartphones ; Tablet computers ; Touch control panels</subject><ispartof>IEEE journal of the Electron Devices Society, 2018-01, Vol.6, p.766-773</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c402t-1410ba053fcfca6e2822105f11beda9f112c8764f32aa34f5240f54b4c8b7dad3</citedby><cites>FETCH-LOGICAL-c402t-1410ba053fcfca6e2822105f11beda9f112c8764f32aa34f5240f54b4c8b7dad3</cites><orcidid>0000-0003-3096-4700 ; 0000-0001-6450-8872 ; 0000-0002-9022-8062 ; 0000-0002-0016-0691 ; 0000-0002-2070-8853</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8391712$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,27610,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Gao, Shuo</creatorcontrib><creatorcontrib>Duan, Jifang</creatorcontrib><creatorcontrib>Kitsos, Vasileios</creatorcontrib><creatorcontrib>Selviah, David R.</creatorcontrib><creatorcontrib>Nathan, Arokia</creatorcontrib><title>User-Oriented Piezoelectric Force Sensing and Artificial Neural Networks in Interactive Displays</title><title>IEEE journal of the Electron Devices Society</title><addtitle>JEDS</addtitle><description>Force touch based interactivity has been widely integrated into displays equipped in most of smart electronic systems such as smartphones and tablets. This paper reports on application of artificial neural networks to analyze data generated from piezoelectric based touch panels for providing customized force sensing operation. Based on the experimental results, high force sensing accuracy (93.3%) is achieved when three force levels are used. Two-dimensional sensing, also achieved with the proposed technique, with high detection accuracy (95.2%). The technique presented here not only achieves high accuracy, but also allows users to define the range of force levels through behavioral means thus enhancing interactivity experience.</description><subject>Accuracy</subject><subject>Artificial neural network</subject><subject>Artificial neural networks</subject><subject>customized force sensing</subject><subject>Detection</subject><subject>detection accuracy</subject><subject>Displays</subject><subject>Electrical engineering</subject><subject>Electron devices</subject><subject>Electronic systems</subject><subject>Force</subject><subject>interactive display</subject><subject>Neural networks</subject><subject>Object recognition</subject><subject>Piezoelectric materials</subject><subject>Piezoelectricity</subject><subject>Sensors</subject><subject>Smartphones</subject><subject>Tablet computers</subject><subject>Touch control panels</subject><issn>2168-6734</issn><issn>2168-6734</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1PHDEMjapWKtryA6peInGeJV-TyRwRX12ESiXKOfUkDsp2mGyTWSr49WRZhOrLs2y_Z8uPkK-cLTln_fHV-dntUjBulsIo0_PuAzkQXJtGd1J9_C__TA5LWbMahute6wPy-65gbm5yxGlGT39GfE44optzdPQiZYf0FqcSp3sKk6cneY4huggj_YHb_Arzv5T_FBonuqoaGdwcH5GexbIZ4al8IZ8CjAUP33BB7i7Of51-b65vLlenJ9eNU0zMDVecDcBaGVxwoFEYIThrA-cDeugrCmc6rYIUAFKFVigWWjUoZ4bOg5cLstrr-gRru8nxAfKTTRDtayHlewv1eDeiBVPJ3nnVca1gYCCFdM542QsEaLFqHe21Njn93WKZ7Tpt81TPt0L0PZdC128uCN9PuZxKyRjet3Jmd77YnS9254t986Vyvu05ERHf542sPS7kC9M3iXo</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Gao, Shuo</creator><creator>Duan, Jifang</creator><creator>Kitsos, Vasileios</creator><creator>Selviah, David R.</creator><creator>Nathan, Arokia</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-3096-4700</orcidid><orcidid>https://orcid.org/0000-0001-6450-8872</orcidid><orcidid>https://orcid.org/0000-0002-9022-8062</orcidid><orcidid>https://orcid.org/0000-0002-0016-0691</orcidid><orcidid>https://orcid.org/0000-0002-2070-8853</orcidid></search><sort><creationdate>20180101</creationdate><title>User-Oriented Piezoelectric Force Sensing and Artificial Neural Networks in Interactive Displays</title><author>Gao, Shuo ; Duan, Jifang ; Kitsos, Vasileios ; Selviah, David R. ; Nathan, Arokia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-1410ba053fcfca6e2822105f11beda9f112c8764f32aa34f5240f54b4c8b7dad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Accuracy</topic><topic>Artificial neural network</topic><topic>Artificial neural networks</topic><topic>customized force sensing</topic><topic>Detection</topic><topic>detection accuracy</topic><topic>Displays</topic><topic>Electrical engineering</topic><topic>Electron devices</topic><topic>Electronic systems</topic><topic>Force</topic><topic>interactive display</topic><topic>Neural networks</topic><topic>Object recognition</topic><topic>Piezoelectric materials</topic><topic>Piezoelectricity</topic><topic>Sensors</topic><topic>Smartphones</topic><topic>Tablet computers</topic><topic>Touch control panels</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gao, Shuo</creatorcontrib><creatorcontrib>Duan, Jifang</creatorcontrib><creatorcontrib>Kitsos, Vasileios</creatorcontrib><creatorcontrib>Selviah, David R.</creatorcontrib><creatorcontrib>Nathan, Arokia</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE journal of the Electron Devices Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gao, Shuo</au><au>Duan, Jifang</au><au>Kitsos, Vasileios</au><au>Selviah, David R.</au><au>Nathan, Arokia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>User-Oriented Piezoelectric Force Sensing and Artificial Neural Networks in Interactive Displays</atitle><jtitle>IEEE journal of the Electron Devices Society</jtitle><stitle>JEDS</stitle><date>2018-01-01</date><risdate>2018</risdate><volume>6</volume><spage>766</spage><epage>773</epage><pages>766-773</pages><issn>2168-6734</issn><eissn>2168-6734</eissn><coden>IJEDAC</coden><abstract>Force touch based interactivity has been widely integrated into displays equipped in most of smart electronic systems such as smartphones and tablets. This paper reports on application of artificial neural networks to analyze data generated from piezoelectric based touch panels for providing customized force sensing operation. Based on the experimental results, high force sensing accuracy (93.3%) is achieved when three force levels are used. Two-dimensional sensing, also achieved with the proposed technique, with high detection accuracy (95.2%). The technique presented here not only achieves high accuracy, but also allows users to define the range of force levels through behavioral means thus enhancing interactivity experience.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JEDS.2018.2848917</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-3096-4700</orcidid><orcidid>https://orcid.org/0000-0001-6450-8872</orcidid><orcidid>https://orcid.org/0000-0002-9022-8062</orcidid><orcidid>https://orcid.org/0000-0002-0016-0691</orcidid><orcidid>https://orcid.org/0000-0002-2070-8853</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2168-6734
ispartof IEEE journal of the Electron Devices Society, 2018-01, Vol.6, p.766-773
issn 2168-6734
2168-6734
language eng
recordid cdi_crossref_primary_10_1109_JEDS_2018_2848917
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects Accuracy
Artificial neural network
Artificial neural networks
customized force sensing
Detection
detection accuracy
Displays
Electrical engineering
Electron devices
Electronic systems
Force
interactive display
Neural networks
Object recognition
Piezoelectric materials
Piezoelectricity
Sensors
Smartphones
Tablet computers
Touch control panels
title User-Oriented Piezoelectric Force Sensing and Artificial Neural Networks in Interactive Displays
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T18%3A07%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=User-Oriented%20Piezoelectric%20Force%20Sensing%20and%20Artificial%20Neural%20Networks%20in%20Interactive%20Displays&rft.jtitle=IEEE%20journal%20of%20the%20Electron%20Devices%20Society&rft.au=Gao,%20Shuo&rft.date=2018-01-01&rft.volume=6&rft.spage=766&rft.epage=773&rft.pages=766-773&rft.issn=2168-6734&rft.eissn=2168-6734&rft.coden=IJEDAC&rft_id=info:doi/10.1109/JEDS.2018.2848917&rft_dat=%3Cproquest_cross%3E2299132667%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2299132667&rft_id=info:pmid/&rft_ieee_id=8391712&rft_doaj_id=oai_doaj_org_article_a8240dcd47164ab0a323cc8d392eaa5e&rfr_iscdi=true