Multi-Gain-Stage InGaAs Avalanche Photodiode With Enhanced Gain and Reduced Excess Noise
We report the design, fabrication, and test of an InGaAs avalanche photodiode (APD) for 950-1650 nm wavelength sensing applications. The APD is grown by molecular beam epitaxy on InP substrates from lattice-matched InGaAs and InAlAs alloys. Avalanche multiplication inside the APD occurs in a series...
Gespeichert in:
Veröffentlicht in: | IEEE journal of the Electron Devices Society 2013-02, Vol.1 (2), p.54-65 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 65 |
---|---|
container_issue | 2 |
container_start_page | 54 |
container_title | IEEE journal of the Electron Devices Society |
container_volume | 1 |
creator | Williams, George M. Compton, Madison Ramirez, David A. Hayat, Majeed M. Huntington, Andrew S. |
description | We report the design, fabrication, and test of an InGaAs avalanche photodiode (APD) for 950-1650 nm wavelength sensing applications. The APD is grown by molecular beam epitaxy on InP substrates from lattice-matched InGaAs and InAlAs alloys. Avalanche multiplication inside the APD occurs in a series of asymmetric gain stages whose layer ordering acts to enhance the rate of electron-initiated impact ionization and to suppress the rate of hole-initiated ionization when operated at low gain. The multiplication stages are cascaded in series, interposed with carrier relaxation layers in which the electric field is low, preventing avalanche feedback between stages. These measures result in much lower excess multiplication noise and stable linear-mode operation at much higher avalanche gain than is characteristic of APDs fabricated from the same semiconductor alloys in bulk. The noise suppression mechanism is analyzed by simulations of impact ionization spatial distribution and gain statistics, and measurements on APDs implementing the design are presented. The devices employing this design are demonstrated to operate at linear-mode gain in excess of 6000 without avalanche breakdown. Excess noise characterized by an effective impact ionization rate ratio below 0.04 were measured at gains over 1000. |
doi_str_mv | 10.1109/JEDS.2013.2258072 |
format | Article |
fullrecord | <record><control><sourceid>doaj_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JEDS_2013_2258072</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6509920</ieee_id><doaj_id>oai_doaj_org_article_1c8815fe632445bb85d2b83e7b76274c</doaj_id><sourcerecordid>oai_doaj_org_article_1c8815fe632445bb85d2b83e7b76274c</sourcerecordid><originalsourceid>FETCH-LOGICAL-c374t-fffccec032281e0e2f3ff02f959a95c3ab251228b8bf984f07f301033e6e49973</originalsourceid><addsrcrecordid>eNpNkM1OwzAQhCMEElXpAyAufoEU_ySOfaxKKEXlRxQEN8tx1o2rEKM4RfD2JBRV7GVXMzvfYaLonOApIVhe3uZX6ynFhE0pTQXO6FE0ooSLmGcsOf53n0aTELa4H0G45HwUvd3t6s7FC-2aeN3pDaBls9CzgGafutaNqQA9Vr7zpfMloFfXVShvqt6AEg0hpJsSPUG5G4T8y0AI6N67AGfRidV1gMnfHkcv1_nz_CZePSyW89kqNixLuthaawwYzCgVBDBQy6zF1MpUapkapguakt4rRGGlSCzOLMMEMwYcEikzNo6We27p9VZ9tO5dt9_Ka6d-Bd9ulG47Z2pQxAhBUguc0SRJi0KkJS0Eg6zIOM0S07PInmVaH0IL9sAjWA1Nq6FpNTSt_pruMxf7jAOAwz9PsZQUsx8xxXgq</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Multi-Gain-Stage InGaAs Avalanche Photodiode With Enhanced Gain and Reduced Excess Noise</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Williams, George M. ; Compton, Madison ; Ramirez, David A. ; Hayat, Majeed M. ; Huntington, Andrew S.</creator><creatorcontrib>Williams, George M. ; Compton, Madison ; Ramirez, David A. ; Hayat, Majeed M. ; Huntington, Andrew S.</creatorcontrib><description>We report the design, fabrication, and test of an InGaAs avalanche photodiode (APD) for 950-1650 nm wavelength sensing applications. The APD is grown by molecular beam epitaxy on InP substrates from lattice-matched InGaAs and InAlAs alloys. Avalanche multiplication inside the APD occurs in a series of asymmetric gain stages whose layer ordering acts to enhance the rate of electron-initiated impact ionization and to suppress the rate of hole-initiated ionization when operated at low gain. The multiplication stages are cascaded in series, interposed with carrier relaxation layers in which the electric field is low, preventing avalanche feedback between stages. These measures result in much lower excess multiplication noise and stable linear-mode operation at much higher avalanche gain than is characteristic of APDs fabricated from the same semiconductor alloys in bulk. The noise suppression mechanism is analyzed by simulations of impact ionization spatial distribution and gain statistics, and measurements on APDs implementing the design are presented. The devices employing this design are demonstrated to operate at linear-mode gain in excess of 6000 without avalanche breakdown. Excess noise characterized by an effective impact ionization rate ratio below 0.04 were measured at gains over 1000.</description><identifier>ISSN: 2168-6734</identifier><identifier>EISSN: 2168-6734</identifier><identifier>DOI: 10.1109/JEDS.2013.2258072</identifier><identifier>CODEN: IJEDAC</identifier><language>eng</language><publisher>IEEE</publisher><subject>Avalanche photodiode ; Avalanche photodiodes ; Gain measurement ; Metals ; Noise reduction ; optical receiver ; Performance evaluation ; photo detector ; photon counting ; Semiconductor device measurement ; Temperature measurement</subject><ispartof>IEEE journal of the Electron Devices Society, 2013-02, Vol.1 (2), p.54-65</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c374t-fffccec032281e0e2f3ff02f959a95c3ab251228b8bf984f07f301033e6e49973</citedby><cites>FETCH-LOGICAL-c374t-fffccec032281e0e2f3ff02f959a95c3ab251228b8bf984f07f301033e6e49973</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6509920$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,861,2096,27614,27905,27906,54914</link.rule.ids></links><search><creatorcontrib>Williams, George M.</creatorcontrib><creatorcontrib>Compton, Madison</creatorcontrib><creatorcontrib>Ramirez, David A.</creatorcontrib><creatorcontrib>Hayat, Majeed M.</creatorcontrib><creatorcontrib>Huntington, Andrew S.</creatorcontrib><title>Multi-Gain-Stage InGaAs Avalanche Photodiode With Enhanced Gain and Reduced Excess Noise</title><title>IEEE journal of the Electron Devices Society</title><addtitle>JEDS</addtitle><description>We report the design, fabrication, and test of an InGaAs avalanche photodiode (APD) for 950-1650 nm wavelength sensing applications. The APD is grown by molecular beam epitaxy on InP substrates from lattice-matched InGaAs and InAlAs alloys. Avalanche multiplication inside the APD occurs in a series of asymmetric gain stages whose layer ordering acts to enhance the rate of electron-initiated impact ionization and to suppress the rate of hole-initiated ionization when operated at low gain. The multiplication stages are cascaded in series, interposed with carrier relaxation layers in which the electric field is low, preventing avalanche feedback between stages. These measures result in much lower excess multiplication noise and stable linear-mode operation at much higher avalanche gain than is characteristic of APDs fabricated from the same semiconductor alloys in bulk. The noise suppression mechanism is analyzed by simulations of impact ionization spatial distribution and gain statistics, and measurements on APDs implementing the design are presented. The devices employing this design are demonstrated to operate at linear-mode gain in excess of 6000 without avalanche breakdown. Excess noise characterized by an effective impact ionization rate ratio below 0.04 were measured at gains over 1000.</description><subject>Avalanche photodiode</subject><subject>Avalanche photodiodes</subject><subject>Gain measurement</subject><subject>Metals</subject><subject>Noise reduction</subject><subject>optical receiver</subject><subject>Performance evaluation</subject><subject>photo detector</subject><subject>photon counting</subject><subject>Semiconductor device measurement</subject><subject>Temperature measurement</subject><issn>2168-6734</issn><issn>2168-6734</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkM1OwzAQhCMEElXpAyAufoEU_ySOfaxKKEXlRxQEN8tx1o2rEKM4RfD2JBRV7GVXMzvfYaLonOApIVhe3uZX6ynFhE0pTQXO6FE0ooSLmGcsOf53n0aTELa4H0G45HwUvd3t6s7FC-2aeN3pDaBls9CzgGafutaNqQA9Vr7zpfMloFfXVShvqt6AEg0hpJsSPUG5G4T8y0AI6N67AGfRidV1gMnfHkcv1_nz_CZePSyW89kqNixLuthaawwYzCgVBDBQy6zF1MpUapkapguakt4rRGGlSCzOLMMEMwYcEikzNo6We27p9VZ9tO5dt9_Ka6d-Bd9ulG47Z2pQxAhBUguc0SRJi0KkJS0Eg6zIOM0S07PInmVaH0IL9sAjWA1Nq6FpNTSt_pruMxf7jAOAwz9PsZQUsx8xxXgq</recordid><startdate>20130201</startdate><enddate>20130201</enddate><creator>Williams, George M.</creator><creator>Compton, Madison</creator><creator>Ramirez, David A.</creator><creator>Hayat, Majeed M.</creator><creator>Huntington, Andrew S.</creator><general>IEEE</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope></search><sort><creationdate>20130201</creationdate><title>Multi-Gain-Stage InGaAs Avalanche Photodiode With Enhanced Gain and Reduced Excess Noise</title><author>Williams, George M. ; Compton, Madison ; Ramirez, David A. ; Hayat, Majeed M. ; Huntington, Andrew S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c374t-fffccec032281e0e2f3ff02f959a95c3ab251228b8bf984f07f301033e6e49973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Avalanche photodiode</topic><topic>Avalanche photodiodes</topic><topic>Gain measurement</topic><topic>Metals</topic><topic>Noise reduction</topic><topic>optical receiver</topic><topic>Performance evaluation</topic><topic>photo detector</topic><topic>photon counting</topic><topic>Semiconductor device measurement</topic><topic>Temperature measurement</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Williams, George M.</creatorcontrib><creatorcontrib>Compton, Madison</creatorcontrib><creatorcontrib>Ramirez, David A.</creatorcontrib><creatorcontrib>Hayat, Majeed M.</creatorcontrib><creatorcontrib>Huntington, Andrew S.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE journal of the Electron Devices Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Williams, George M.</au><au>Compton, Madison</au><au>Ramirez, David A.</au><au>Hayat, Majeed M.</au><au>Huntington, Andrew S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-Gain-Stage InGaAs Avalanche Photodiode With Enhanced Gain and Reduced Excess Noise</atitle><jtitle>IEEE journal of the Electron Devices Society</jtitle><stitle>JEDS</stitle><date>2013-02-01</date><risdate>2013</risdate><volume>1</volume><issue>2</issue><spage>54</spage><epage>65</epage><pages>54-65</pages><issn>2168-6734</issn><eissn>2168-6734</eissn><coden>IJEDAC</coden><abstract>We report the design, fabrication, and test of an InGaAs avalanche photodiode (APD) for 950-1650 nm wavelength sensing applications. The APD is grown by molecular beam epitaxy on InP substrates from lattice-matched InGaAs and InAlAs alloys. Avalanche multiplication inside the APD occurs in a series of asymmetric gain stages whose layer ordering acts to enhance the rate of electron-initiated impact ionization and to suppress the rate of hole-initiated ionization when operated at low gain. The multiplication stages are cascaded in series, interposed with carrier relaxation layers in which the electric field is low, preventing avalanche feedback between stages. These measures result in much lower excess multiplication noise and stable linear-mode operation at much higher avalanche gain than is characteristic of APDs fabricated from the same semiconductor alloys in bulk. The noise suppression mechanism is analyzed by simulations of impact ionization spatial distribution and gain statistics, and measurements on APDs implementing the design are presented. The devices employing this design are demonstrated to operate at linear-mode gain in excess of 6000 without avalanche breakdown. Excess noise characterized by an effective impact ionization rate ratio below 0.04 were measured at gains over 1000.</abstract><pub>IEEE</pub><doi>10.1109/JEDS.2013.2258072</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2168-6734 |
ispartof | IEEE journal of the Electron Devices Society, 2013-02, Vol.1 (2), p.54-65 |
issn | 2168-6734 2168-6734 |
language | eng |
recordid | cdi_crossref_primary_10_1109_JEDS_2013_2258072 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Avalanche photodiode Avalanche photodiodes Gain measurement Metals Noise reduction optical receiver Performance evaluation photo detector photon counting Semiconductor device measurement Temperature measurement |
title | Multi-Gain-Stage InGaAs Avalanche Photodiode With Enhanced Gain and Reduced Excess Noise |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T12%3A02%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-doaj_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-Gain-Stage%20InGaAs%20Avalanche%20Photodiode%20With%20Enhanced%20Gain%20and%20Reduced%20Excess%20Noise&rft.jtitle=IEEE%20journal%20of%20the%20Electron%20Devices%20Society&rft.au=Williams,%20George%20M.&rft.date=2013-02-01&rft.volume=1&rft.issue=2&rft.spage=54&rft.epage=65&rft.pages=54-65&rft.issn=2168-6734&rft.eissn=2168-6734&rft.coden=IJEDAC&rft_id=info:doi/10.1109/JEDS.2013.2258072&rft_dat=%3Cdoaj_cross%3Eoai_doaj_org_article_1c8815fe632445bb85d2b83e7b76274c%3C/doaj_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6509920&rft_doaj_id=oai_doaj_org_article_1c8815fe632445bb85d2b83e7b76274c&rfr_iscdi=true |