Multi-Gain-Stage InGaAs Avalanche Photodiode With Enhanced Gain and Reduced Excess Noise

We report the design, fabrication, and test of an InGaAs avalanche photodiode (APD) for 950-1650 nm wavelength sensing applications. The APD is grown by molecular beam epitaxy on InP substrates from lattice-matched InGaAs and InAlAs alloys. Avalanche multiplication inside the APD occurs in a series...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of the Electron Devices Society 2013-02, Vol.1 (2), p.54-65
Hauptverfasser: Williams, George M., Compton, Madison, Ramirez, David A., Hayat, Majeed M., Huntington, Andrew S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 65
container_issue 2
container_start_page 54
container_title IEEE journal of the Electron Devices Society
container_volume 1
creator Williams, George M.
Compton, Madison
Ramirez, David A.
Hayat, Majeed M.
Huntington, Andrew S.
description We report the design, fabrication, and test of an InGaAs avalanche photodiode (APD) for 950-1650 nm wavelength sensing applications. The APD is grown by molecular beam epitaxy on InP substrates from lattice-matched InGaAs and InAlAs alloys. Avalanche multiplication inside the APD occurs in a series of asymmetric gain stages whose layer ordering acts to enhance the rate of electron-initiated impact ionization and to suppress the rate of hole-initiated ionization when operated at low gain. The multiplication stages are cascaded in series, interposed with carrier relaxation layers in which the electric field is low, preventing avalanche feedback between stages. These measures result in much lower excess multiplication noise and stable linear-mode operation at much higher avalanche gain than is characteristic of APDs fabricated from the same semiconductor alloys in bulk. The noise suppression mechanism is analyzed by simulations of impact ionization spatial distribution and gain statistics, and measurements on APDs implementing the design are presented. The devices employing this design are demonstrated to operate at linear-mode gain in excess of 6000 without avalanche breakdown. Excess noise characterized by an effective impact ionization rate ratio below 0.04 were measured at gains over 1000.
doi_str_mv 10.1109/JEDS.2013.2258072
format Article
fullrecord <record><control><sourceid>doaj_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JEDS_2013_2258072</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6509920</ieee_id><doaj_id>oai_doaj_org_article_1c8815fe632445bb85d2b83e7b76274c</doaj_id><sourcerecordid>oai_doaj_org_article_1c8815fe632445bb85d2b83e7b76274c</sourcerecordid><originalsourceid>FETCH-LOGICAL-c374t-fffccec032281e0e2f3ff02f959a95c3ab251228b8bf984f07f301033e6e49973</originalsourceid><addsrcrecordid>eNpNkM1OwzAQhCMEElXpAyAufoEU_ySOfaxKKEXlRxQEN8tx1o2rEKM4RfD2JBRV7GVXMzvfYaLonOApIVhe3uZX6ynFhE0pTQXO6FE0ooSLmGcsOf53n0aTELa4H0G45HwUvd3t6s7FC-2aeN3pDaBls9CzgGafutaNqQA9Vr7zpfMloFfXVShvqt6AEg0hpJsSPUG5G4T8y0AI6N67AGfRidV1gMnfHkcv1_nz_CZePSyW89kqNixLuthaawwYzCgVBDBQy6zF1MpUapkapguakt4rRGGlSCzOLMMEMwYcEikzNo6We27p9VZ9tO5dt9_Ka6d-Bd9ulG47Z2pQxAhBUguc0SRJi0KkJS0Eg6zIOM0S07PInmVaH0IL9sAjWA1Nq6FpNTSt_pruMxf7jAOAwz9PsZQUsx8xxXgq</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Multi-Gain-Stage InGaAs Avalanche Photodiode With Enhanced Gain and Reduced Excess Noise</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Williams, George M. ; Compton, Madison ; Ramirez, David A. ; Hayat, Majeed M. ; Huntington, Andrew S.</creator><creatorcontrib>Williams, George M. ; Compton, Madison ; Ramirez, David A. ; Hayat, Majeed M. ; Huntington, Andrew S.</creatorcontrib><description>We report the design, fabrication, and test of an InGaAs avalanche photodiode (APD) for 950-1650 nm wavelength sensing applications. The APD is grown by molecular beam epitaxy on InP substrates from lattice-matched InGaAs and InAlAs alloys. Avalanche multiplication inside the APD occurs in a series of asymmetric gain stages whose layer ordering acts to enhance the rate of electron-initiated impact ionization and to suppress the rate of hole-initiated ionization when operated at low gain. The multiplication stages are cascaded in series, interposed with carrier relaxation layers in which the electric field is low, preventing avalanche feedback between stages. These measures result in much lower excess multiplication noise and stable linear-mode operation at much higher avalanche gain than is characteristic of APDs fabricated from the same semiconductor alloys in bulk. The noise suppression mechanism is analyzed by simulations of impact ionization spatial distribution and gain statistics, and measurements on APDs implementing the design are presented. The devices employing this design are demonstrated to operate at linear-mode gain in excess of 6000 without avalanche breakdown. Excess noise characterized by an effective impact ionization rate ratio below 0.04 were measured at gains over 1000.</description><identifier>ISSN: 2168-6734</identifier><identifier>EISSN: 2168-6734</identifier><identifier>DOI: 10.1109/JEDS.2013.2258072</identifier><identifier>CODEN: IJEDAC</identifier><language>eng</language><publisher>IEEE</publisher><subject>Avalanche photodiode ; Avalanche photodiodes ; Gain measurement ; Metals ; Noise reduction ; optical receiver ; Performance evaluation ; photo detector ; photon counting ; Semiconductor device measurement ; Temperature measurement</subject><ispartof>IEEE journal of the Electron Devices Society, 2013-02, Vol.1 (2), p.54-65</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c374t-fffccec032281e0e2f3ff02f959a95c3ab251228b8bf984f07f301033e6e49973</citedby><cites>FETCH-LOGICAL-c374t-fffccec032281e0e2f3ff02f959a95c3ab251228b8bf984f07f301033e6e49973</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6509920$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,861,2096,27614,27905,27906,54914</link.rule.ids></links><search><creatorcontrib>Williams, George M.</creatorcontrib><creatorcontrib>Compton, Madison</creatorcontrib><creatorcontrib>Ramirez, David A.</creatorcontrib><creatorcontrib>Hayat, Majeed M.</creatorcontrib><creatorcontrib>Huntington, Andrew S.</creatorcontrib><title>Multi-Gain-Stage InGaAs Avalanche Photodiode With Enhanced Gain and Reduced Excess Noise</title><title>IEEE journal of the Electron Devices Society</title><addtitle>JEDS</addtitle><description>We report the design, fabrication, and test of an InGaAs avalanche photodiode (APD) for 950-1650 nm wavelength sensing applications. The APD is grown by molecular beam epitaxy on InP substrates from lattice-matched InGaAs and InAlAs alloys. Avalanche multiplication inside the APD occurs in a series of asymmetric gain stages whose layer ordering acts to enhance the rate of electron-initiated impact ionization and to suppress the rate of hole-initiated ionization when operated at low gain. The multiplication stages are cascaded in series, interposed with carrier relaxation layers in which the electric field is low, preventing avalanche feedback between stages. These measures result in much lower excess multiplication noise and stable linear-mode operation at much higher avalanche gain than is characteristic of APDs fabricated from the same semiconductor alloys in bulk. The noise suppression mechanism is analyzed by simulations of impact ionization spatial distribution and gain statistics, and measurements on APDs implementing the design are presented. The devices employing this design are demonstrated to operate at linear-mode gain in excess of 6000 without avalanche breakdown. Excess noise characterized by an effective impact ionization rate ratio below 0.04 were measured at gains over 1000.</description><subject>Avalanche photodiode</subject><subject>Avalanche photodiodes</subject><subject>Gain measurement</subject><subject>Metals</subject><subject>Noise reduction</subject><subject>optical receiver</subject><subject>Performance evaluation</subject><subject>photo detector</subject><subject>photon counting</subject><subject>Semiconductor device measurement</subject><subject>Temperature measurement</subject><issn>2168-6734</issn><issn>2168-6734</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkM1OwzAQhCMEElXpAyAufoEU_ySOfaxKKEXlRxQEN8tx1o2rEKM4RfD2JBRV7GVXMzvfYaLonOApIVhe3uZX6ynFhE0pTQXO6FE0ooSLmGcsOf53n0aTELa4H0G45HwUvd3t6s7FC-2aeN3pDaBls9CzgGafutaNqQA9Vr7zpfMloFfXVShvqt6AEg0hpJsSPUG5G4T8y0AI6N67AGfRidV1gMnfHkcv1_nz_CZePSyW89kqNixLuthaawwYzCgVBDBQy6zF1MpUapkapguakt4rRGGlSCzOLMMEMwYcEikzNo6We27p9VZ9tO5dt9_Ka6d-Bd9ulG47Z2pQxAhBUguc0SRJi0KkJS0Eg6zIOM0S07PInmVaH0IL9sAjWA1Nq6FpNTSt_pruMxf7jAOAwz9PsZQUsx8xxXgq</recordid><startdate>20130201</startdate><enddate>20130201</enddate><creator>Williams, George M.</creator><creator>Compton, Madison</creator><creator>Ramirez, David A.</creator><creator>Hayat, Majeed M.</creator><creator>Huntington, Andrew S.</creator><general>IEEE</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope></search><sort><creationdate>20130201</creationdate><title>Multi-Gain-Stage InGaAs Avalanche Photodiode With Enhanced Gain and Reduced Excess Noise</title><author>Williams, George M. ; Compton, Madison ; Ramirez, David A. ; Hayat, Majeed M. ; Huntington, Andrew S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c374t-fffccec032281e0e2f3ff02f959a95c3ab251228b8bf984f07f301033e6e49973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Avalanche photodiode</topic><topic>Avalanche photodiodes</topic><topic>Gain measurement</topic><topic>Metals</topic><topic>Noise reduction</topic><topic>optical receiver</topic><topic>Performance evaluation</topic><topic>photo detector</topic><topic>photon counting</topic><topic>Semiconductor device measurement</topic><topic>Temperature measurement</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Williams, George M.</creatorcontrib><creatorcontrib>Compton, Madison</creatorcontrib><creatorcontrib>Ramirez, David A.</creatorcontrib><creatorcontrib>Hayat, Majeed M.</creatorcontrib><creatorcontrib>Huntington, Andrew S.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE journal of the Electron Devices Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Williams, George M.</au><au>Compton, Madison</au><au>Ramirez, David A.</au><au>Hayat, Majeed M.</au><au>Huntington, Andrew S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-Gain-Stage InGaAs Avalanche Photodiode With Enhanced Gain and Reduced Excess Noise</atitle><jtitle>IEEE journal of the Electron Devices Society</jtitle><stitle>JEDS</stitle><date>2013-02-01</date><risdate>2013</risdate><volume>1</volume><issue>2</issue><spage>54</spage><epage>65</epage><pages>54-65</pages><issn>2168-6734</issn><eissn>2168-6734</eissn><coden>IJEDAC</coden><abstract>We report the design, fabrication, and test of an InGaAs avalanche photodiode (APD) for 950-1650 nm wavelength sensing applications. The APD is grown by molecular beam epitaxy on InP substrates from lattice-matched InGaAs and InAlAs alloys. Avalanche multiplication inside the APD occurs in a series of asymmetric gain stages whose layer ordering acts to enhance the rate of electron-initiated impact ionization and to suppress the rate of hole-initiated ionization when operated at low gain. The multiplication stages are cascaded in series, interposed with carrier relaxation layers in which the electric field is low, preventing avalanche feedback between stages. These measures result in much lower excess multiplication noise and stable linear-mode operation at much higher avalanche gain than is characteristic of APDs fabricated from the same semiconductor alloys in bulk. The noise suppression mechanism is analyzed by simulations of impact ionization spatial distribution and gain statistics, and measurements on APDs implementing the design are presented. The devices employing this design are demonstrated to operate at linear-mode gain in excess of 6000 without avalanche breakdown. Excess noise characterized by an effective impact ionization rate ratio below 0.04 were measured at gains over 1000.</abstract><pub>IEEE</pub><doi>10.1109/JEDS.2013.2258072</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2168-6734
ispartof IEEE journal of the Electron Devices Society, 2013-02, Vol.1 (2), p.54-65
issn 2168-6734
2168-6734
language eng
recordid cdi_crossref_primary_10_1109_JEDS_2013_2258072
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects Avalanche photodiode
Avalanche photodiodes
Gain measurement
Metals
Noise reduction
optical receiver
Performance evaluation
photo detector
photon counting
Semiconductor device measurement
Temperature measurement
title Multi-Gain-Stage InGaAs Avalanche Photodiode With Enhanced Gain and Reduced Excess Noise
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T12%3A02%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-doaj_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-Gain-Stage%20InGaAs%20Avalanche%20Photodiode%20With%20Enhanced%20Gain%20and%20Reduced%20Excess%20Noise&rft.jtitle=IEEE%20journal%20of%20the%20Electron%20Devices%20Society&rft.au=Williams,%20George%20M.&rft.date=2013-02-01&rft.volume=1&rft.issue=2&rft.spage=54&rft.epage=65&rft.pages=54-65&rft.issn=2168-6734&rft.eissn=2168-6734&rft.coden=IJEDAC&rft_id=info:doi/10.1109/JEDS.2013.2258072&rft_dat=%3Cdoaj_cross%3Eoai_doaj_org_article_1c8815fe632445bb85d2b83e7b76274c%3C/doaj_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6509920&rft_doaj_id=oai_doaj_org_article_1c8815fe632445bb85d2b83e7b76274c&rfr_iscdi=true