High entropy secrecy generation from wireless CIR
The physical characteristics of wireless channels, in particular the channel impulse response (CIR), have become an attractive source of shared secrecy between two communicating parties for many wireless applications. However, ensuring high-entropy secret bits from the CIR may not be always feasible...
Gespeichert in:
Veröffentlicht in: | Journal of communications and networks 2019, 21(2), , pp.177-191 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 191 |
---|---|
container_issue | 2 |
container_start_page | 177 |
container_title | Journal of communications and networks |
container_volume | 21 |
creator | Hao Li Chen Shen Yanxiang Zhao Sahin, Gokhan Hyeong-Ah Choi Shah, Yogendra |
description | The physical characteristics of wireless channels, in particular the channel impulse response (CIR), have become an attractive source of shared secrecy between two communicating parties for many wireless applications. However, ensuring high-entropy secret bits from the CIR may not be always feasible, including in IoT and/or indoor environments, where the coherence time may not be easy to obtain, or mobility is limited. Many techniques have been developed to resolve the above problems, including privacy amplification for higher entropy output, and pre-processing for data distillation. In this paper, we develop a framework for extracting entropy from sequentially arriving channel impulse response observation samples, and propose algorithms for both online and offline versions of the problem. We fully characterize the optimal solutions to these problems through a series of analytic results, and establish the optimality of our proposed online and offline algorithms, namely A_EMSON and A_EMSOFF to solve the problem. We also verify the performance of the algorithms through comparisons with the existing related techniques, and evaluate their capability to ensure high-entropy under different channel models using MATLAB simulations. |
doi_str_mv | 10.1109/JCN.2019.000019 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JCN_2019_000019</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8718095</ieee_id><sourcerecordid>2227586658</sourcerecordid><originalsourceid>FETCH-LOGICAL-c364t-26bab655992b928417f9f158224aecddfcb4666a720cf182defafe615deab0d13</originalsourceid><addsrcrecordid>eNo9kD1PwzAQhi0EEqUwM7BEYmJI8TmxY49VBLSoAqkqs-U455J-xMVuhfrvSQnilveG5z2dHkJugY4AqHp8Ld9GjIIa0W5AnZEBqEKknOdw3u2MqZRlBb0kVzGuKM0hy2FAYNIsPxNs98HvjklEG9AekyW2GMy-8W3igt8m303ADcaYlNP5NblwZhPx5i-H5OP5aVFO0tn7y7Qcz1KbiXyfMlGZSnCuFKsUkzkUTjngkrHcoK1rZ6tcCGEKRq0DyWp0xqEAXqOpaA3ZkDz0d9vg9No22pvmN5der4MezxdTzTPOpco69r5nd8F_HTDu9cofQtu9pxljBZdCcNlRjz1lg48xoNO70GxNOGqg-uRQdw71yaHuHXaNu77RIOI_LQuQVPHsBxN-a1I</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2227586658</pqid></control><display><type>article</type><title>High entropy secrecy generation from wireless CIR</title><source>IEEE Electronic Library (IEL)</source><creator>Hao Li ; Chen Shen ; Yanxiang Zhao ; Sahin, Gokhan ; Hyeong-Ah Choi ; Shah, Yogendra</creator><creatorcontrib>Hao Li ; Chen Shen ; Yanxiang Zhao ; Sahin, Gokhan ; Hyeong-Ah Choi ; Shah, Yogendra</creatorcontrib><description>The physical characteristics of wireless channels, in particular the channel impulse response (CIR), have become an attractive source of shared secrecy between two communicating parties for many wireless applications. However, ensuring high-entropy secret bits from the CIR may not be always feasible, including in IoT and/or indoor environments, where the coherence time may not be easy to obtain, or mobility is limited. Many techniques have been developed to resolve the above problems, including privacy amplification for higher entropy output, and pre-processing for data distillation. In this paper, we develop a framework for extracting entropy from sequentially arriving channel impulse response observation samples, and propose algorithms for both online and offline versions of the problem. We fully characterize the optimal solutions to these problems through a series of analytic results, and establish the optimality of our proposed online and offline algorithms, namely A_EMSON and A_EMSOFF to solve the problem. We also verify the performance of the algorithms through comparisons with the existing related techniques, and evaluate their capability to ensure high-entropy under different channel models using MATLAB simulations.</description><identifier>ISSN: 1229-2370</identifier><identifier>EISSN: 1976-5541</identifier><identifier>DOI: 10.1109/JCN.2019.000019</identifier><language>eng</language><publisher>Seoul: Editorial Department of Journal of Communications and Networks</publisher><subject>Algorithms ; Coherence ; Communication system security ; Computer simulation ; Data mining ; Data models ; Distillation ; Entropy ; Entropy extraction ; Impulse response ; Indoor environments ; Optimization ; physical layer security ; Physical properties ; Quantization (signal) ; secrecy generation ; Wireless communication ; Wireless communications ; wireless networks ; 전자/정보통신공학</subject><ispartof>Journal of Communications and Networks, 2019, 21(2), , pp.177-191</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c364t-26bab655992b928417f9f158224aecddfcb4666a720cf182defafe615deab0d13</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8718095$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><backlink>$$Uhttps://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002464068$$DAccess content in National Research Foundation of Korea (NRF)$$Hfree_for_read</backlink></links><search><creatorcontrib>Hao Li</creatorcontrib><creatorcontrib>Chen Shen</creatorcontrib><creatorcontrib>Yanxiang Zhao</creatorcontrib><creatorcontrib>Sahin, Gokhan</creatorcontrib><creatorcontrib>Hyeong-Ah Choi</creatorcontrib><creatorcontrib>Shah, Yogendra</creatorcontrib><title>High entropy secrecy generation from wireless CIR</title><title>Journal of communications and networks</title><addtitle>JCN</addtitle><description>The physical characteristics of wireless channels, in particular the channel impulse response (CIR), have become an attractive source of shared secrecy between two communicating parties for many wireless applications. However, ensuring high-entropy secret bits from the CIR may not be always feasible, including in IoT and/or indoor environments, where the coherence time may not be easy to obtain, or mobility is limited. Many techniques have been developed to resolve the above problems, including privacy amplification for higher entropy output, and pre-processing for data distillation. In this paper, we develop a framework for extracting entropy from sequentially arriving channel impulse response observation samples, and propose algorithms for both online and offline versions of the problem. We fully characterize the optimal solutions to these problems through a series of analytic results, and establish the optimality of our proposed online and offline algorithms, namely A_EMSON and A_EMSOFF to solve the problem. We also verify the performance of the algorithms through comparisons with the existing related techniques, and evaluate their capability to ensure high-entropy under different channel models using MATLAB simulations.</description><subject>Algorithms</subject><subject>Coherence</subject><subject>Communication system security</subject><subject>Computer simulation</subject><subject>Data mining</subject><subject>Data models</subject><subject>Distillation</subject><subject>Entropy</subject><subject>Entropy extraction</subject><subject>Impulse response</subject><subject>Indoor environments</subject><subject>Optimization</subject><subject>physical layer security</subject><subject>Physical properties</subject><subject>Quantization (signal)</subject><subject>secrecy generation</subject><subject>Wireless communication</subject><subject>Wireless communications</subject><subject>wireless networks</subject><subject>전자/정보통신공학</subject><issn>1229-2370</issn><issn>1976-5541</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><recordid>eNo9kD1PwzAQhi0EEqUwM7BEYmJI8TmxY49VBLSoAqkqs-U455J-xMVuhfrvSQnilveG5z2dHkJugY4AqHp8Ld9GjIIa0W5AnZEBqEKknOdw3u2MqZRlBb0kVzGuKM0hy2FAYNIsPxNs98HvjklEG9AekyW2GMy-8W3igt8m303ADcaYlNP5NblwZhPx5i-H5OP5aVFO0tn7y7Qcz1KbiXyfMlGZSnCuFKsUkzkUTjngkrHcoK1rZ6tcCGEKRq0DyWp0xqEAXqOpaA3ZkDz0d9vg9No22pvmN5der4MezxdTzTPOpco69r5nd8F_HTDu9cofQtu9pxljBZdCcNlRjz1lg48xoNO70GxNOGqg-uRQdw71yaHuHXaNu77RIOI_LQuQVPHsBxN-a1I</recordid><startdate>20190401</startdate><enddate>20190401</enddate><creator>Hao Li</creator><creator>Chen Shen</creator><creator>Yanxiang Zhao</creator><creator>Sahin, Gokhan</creator><creator>Hyeong-Ah Choi</creator><creator>Shah, Yogendra</creator><general>Editorial Department of Journal of Communications and Networks</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><general>한국통신학회</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>ACYCR</scope></search><sort><creationdate>20190401</creationdate><title>High entropy secrecy generation from wireless CIR</title><author>Hao Li ; Chen Shen ; Yanxiang Zhao ; Sahin, Gokhan ; Hyeong-Ah Choi ; Shah, Yogendra</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c364t-26bab655992b928417f9f158224aecddfcb4666a720cf182defafe615deab0d13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Coherence</topic><topic>Communication system security</topic><topic>Computer simulation</topic><topic>Data mining</topic><topic>Data models</topic><topic>Distillation</topic><topic>Entropy</topic><topic>Entropy extraction</topic><topic>Impulse response</topic><topic>Indoor environments</topic><topic>Optimization</topic><topic>physical layer security</topic><topic>Physical properties</topic><topic>Quantization (signal)</topic><topic>secrecy generation</topic><topic>Wireless communication</topic><topic>Wireless communications</topic><topic>wireless networks</topic><topic>전자/정보통신공학</topic><toplevel>online_resources</toplevel><creatorcontrib>Hao Li</creatorcontrib><creatorcontrib>Chen Shen</creatorcontrib><creatorcontrib>Yanxiang Zhao</creatorcontrib><creatorcontrib>Sahin, Gokhan</creatorcontrib><creatorcontrib>Hyeong-Ah Choi</creatorcontrib><creatorcontrib>Shah, Yogendra</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Korean Citation Index</collection><jtitle>Journal of communications and networks</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hao Li</au><au>Chen Shen</au><au>Yanxiang Zhao</au><au>Sahin, Gokhan</au><au>Hyeong-Ah Choi</au><au>Shah, Yogendra</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High entropy secrecy generation from wireless CIR</atitle><jtitle>Journal of communications and networks</jtitle><stitle>JCN</stitle><date>2019-04-01</date><risdate>2019</risdate><volume>21</volume><issue>2</issue><spage>177</spage><epage>191</epage><pages>177-191</pages><issn>1229-2370</issn><eissn>1976-5541</eissn><abstract>The physical characteristics of wireless channels, in particular the channel impulse response (CIR), have become an attractive source of shared secrecy between two communicating parties for many wireless applications. However, ensuring high-entropy secret bits from the CIR may not be always feasible, including in IoT and/or indoor environments, where the coherence time may not be easy to obtain, or mobility is limited. Many techniques have been developed to resolve the above problems, including privacy amplification for higher entropy output, and pre-processing for data distillation. In this paper, we develop a framework for extracting entropy from sequentially arriving channel impulse response observation samples, and propose algorithms for both online and offline versions of the problem. We fully characterize the optimal solutions to these problems through a series of analytic results, and establish the optimality of our proposed online and offline algorithms, namely A_EMSON and A_EMSOFF to solve the problem. We also verify the performance of the algorithms through comparisons with the existing related techniques, and evaluate their capability to ensure high-entropy under different channel models using MATLAB simulations.</abstract><cop>Seoul</cop><pub>Editorial Department of Journal of Communications and Networks</pub><doi>10.1109/JCN.2019.000019</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1229-2370 |
ispartof | Journal of Communications and Networks, 2019, 21(2), , pp.177-191 |
issn | 1229-2370 1976-5541 |
language | eng |
recordid | cdi_crossref_primary_10_1109_JCN_2019_000019 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Coherence Communication system security Computer simulation Data mining Data models Distillation Entropy Entropy extraction Impulse response Indoor environments Optimization physical layer security Physical properties Quantization (signal) secrecy generation Wireless communication Wireless communications wireless networks 전자/정보통신공학 |
title | High entropy secrecy generation from wireless CIR |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T01%3A53%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High%20entropy%20secrecy%20generation%20from%20wireless%20CIR&rft.jtitle=Journal%20of%20communications%20and%20networks&rft.au=Hao%20Li&rft.date=2019-04-01&rft.volume=21&rft.issue=2&rft.spage=177&rft.epage=191&rft.pages=177-191&rft.issn=1229-2370&rft.eissn=1976-5541&rft_id=info:doi/10.1109/JCN.2019.000019&rft_dat=%3Cproquest_cross%3E2227586658%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2227586658&rft_id=info:pmid/&rft_ieee_id=8718095&rfr_iscdi=true |