High entropy secrecy generation from wireless CIR

The physical characteristics of wireless channels, in particular the channel impulse response (CIR), have become an attractive source of shared secrecy between two communicating parties for many wireless applications. However, ensuring high-entropy secret bits from the CIR may not be always feasible...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of communications and networks 2019, 21(2), , pp.177-191
Hauptverfasser: Hao Li, Chen Shen, Yanxiang Zhao, Sahin, Gokhan, Hyeong-Ah Choi, Shah, Yogendra
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 191
container_issue 2
container_start_page 177
container_title Journal of communications and networks
container_volume 21
creator Hao Li
Chen Shen
Yanxiang Zhao
Sahin, Gokhan
Hyeong-Ah Choi
Shah, Yogendra
description The physical characteristics of wireless channels, in particular the channel impulse response (CIR), have become an attractive source of shared secrecy between two communicating parties for many wireless applications. However, ensuring high-entropy secret bits from the CIR may not be always feasible, including in IoT and/or indoor environments, where the coherence time may not be easy to obtain, or mobility is limited. Many techniques have been developed to resolve the above problems, including privacy amplification for higher entropy output, and pre-processing for data distillation. In this paper, we develop a framework for extracting entropy from sequentially arriving channel impulse response observation samples, and propose algorithms for both online and offline versions of the problem. We fully characterize the optimal solutions to these problems through a series of analytic results, and establish the optimality of our proposed online and offline algorithms, namely A_EMSON and A_EMSOFF to solve the problem. We also verify the performance of the algorithms through comparisons with the existing related techniques, and evaluate their capability to ensure high-entropy under different channel models using MATLAB simulations.
doi_str_mv 10.1109/JCN.2019.000019
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JCN_2019_000019</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8718095</ieee_id><sourcerecordid>2227586658</sourcerecordid><originalsourceid>FETCH-LOGICAL-c364t-26bab655992b928417f9f158224aecddfcb4666a720cf182defafe615deab0d13</originalsourceid><addsrcrecordid>eNo9kD1PwzAQhi0EEqUwM7BEYmJI8TmxY49VBLSoAqkqs-U455J-xMVuhfrvSQnilveG5z2dHkJugY4AqHp8Ld9GjIIa0W5AnZEBqEKknOdw3u2MqZRlBb0kVzGuKM0hy2FAYNIsPxNs98HvjklEG9AekyW2GMy-8W3igt8m303ADcaYlNP5NblwZhPx5i-H5OP5aVFO0tn7y7Qcz1KbiXyfMlGZSnCuFKsUkzkUTjngkrHcoK1rZ6tcCGEKRq0DyWp0xqEAXqOpaA3ZkDz0d9vg9No22pvmN5der4MezxdTzTPOpco69r5nd8F_HTDu9cofQtu9pxljBZdCcNlRjz1lg48xoNO70GxNOGqg-uRQdw71yaHuHXaNu77RIOI_LQuQVPHsBxN-a1I</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2227586658</pqid></control><display><type>article</type><title>High entropy secrecy generation from wireless CIR</title><source>IEEE Electronic Library (IEL)</source><creator>Hao Li ; Chen Shen ; Yanxiang Zhao ; Sahin, Gokhan ; Hyeong-Ah Choi ; Shah, Yogendra</creator><creatorcontrib>Hao Li ; Chen Shen ; Yanxiang Zhao ; Sahin, Gokhan ; Hyeong-Ah Choi ; Shah, Yogendra</creatorcontrib><description>The physical characteristics of wireless channels, in particular the channel impulse response (CIR), have become an attractive source of shared secrecy between two communicating parties for many wireless applications. However, ensuring high-entropy secret bits from the CIR may not be always feasible, including in IoT and/or indoor environments, where the coherence time may not be easy to obtain, or mobility is limited. Many techniques have been developed to resolve the above problems, including privacy amplification for higher entropy output, and pre-processing for data distillation. In this paper, we develop a framework for extracting entropy from sequentially arriving channel impulse response observation samples, and propose algorithms for both online and offline versions of the problem. We fully characterize the optimal solutions to these problems through a series of analytic results, and establish the optimality of our proposed online and offline algorithms, namely A_EMSON and A_EMSOFF to solve the problem. We also verify the performance of the algorithms through comparisons with the existing related techniques, and evaluate their capability to ensure high-entropy under different channel models using MATLAB simulations.</description><identifier>ISSN: 1229-2370</identifier><identifier>EISSN: 1976-5541</identifier><identifier>DOI: 10.1109/JCN.2019.000019</identifier><language>eng</language><publisher>Seoul: Editorial Department of Journal of Communications and Networks</publisher><subject>Algorithms ; Coherence ; Communication system security ; Computer simulation ; Data mining ; Data models ; Distillation ; Entropy ; Entropy extraction ; Impulse response ; Indoor environments ; Optimization ; physical layer security ; Physical properties ; Quantization (signal) ; secrecy generation ; Wireless communication ; Wireless communications ; wireless networks ; 전자/정보통신공학</subject><ispartof>Journal of Communications and Networks, 2019, 21(2), , pp.177-191</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c364t-26bab655992b928417f9f158224aecddfcb4666a720cf182defafe615deab0d13</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8718095$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><backlink>$$Uhttps://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002464068$$DAccess content in National Research Foundation of Korea (NRF)$$Hfree_for_read</backlink></links><search><creatorcontrib>Hao Li</creatorcontrib><creatorcontrib>Chen Shen</creatorcontrib><creatorcontrib>Yanxiang Zhao</creatorcontrib><creatorcontrib>Sahin, Gokhan</creatorcontrib><creatorcontrib>Hyeong-Ah Choi</creatorcontrib><creatorcontrib>Shah, Yogendra</creatorcontrib><title>High entropy secrecy generation from wireless CIR</title><title>Journal of communications and networks</title><addtitle>JCN</addtitle><description>The physical characteristics of wireless channels, in particular the channel impulse response (CIR), have become an attractive source of shared secrecy between two communicating parties for many wireless applications. However, ensuring high-entropy secret bits from the CIR may not be always feasible, including in IoT and/or indoor environments, where the coherence time may not be easy to obtain, or mobility is limited. Many techniques have been developed to resolve the above problems, including privacy amplification for higher entropy output, and pre-processing for data distillation. In this paper, we develop a framework for extracting entropy from sequentially arriving channel impulse response observation samples, and propose algorithms for both online and offline versions of the problem. We fully characterize the optimal solutions to these problems through a series of analytic results, and establish the optimality of our proposed online and offline algorithms, namely A_EMSON and A_EMSOFF to solve the problem. We also verify the performance of the algorithms through comparisons with the existing related techniques, and evaluate their capability to ensure high-entropy under different channel models using MATLAB simulations.</description><subject>Algorithms</subject><subject>Coherence</subject><subject>Communication system security</subject><subject>Computer simulation</subject><subject>Data mining</subject><subject>Data models</subject><subject>Distillation</subject><subject>Entropy</subject><subject>Entropy extraction</subject><subject>Impulse response</subject><subject>Indoor environments</subject><subject>Optimization</subject><subject>physical layer security</subject><subject>Physical properties</subject><subject>Quantization (signal)</subject><subject>secrecy generation</subject><subject>Wireless communication</subject><subject>Wireless communications</subject><subject>wireless networks</subject><subject>전자/정보통신공학</subject><issn>1229-2370</issn><issn>1976-5541</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><recordid>eNo9kD1PwzAQhi0EEqUwM7BEYmJI8TmxY49VBLSoAqkqs-U455J-xMVuhfrvSQnilveG5z2dHkJugY4AqHp8Ld9GjIIa0W5AnZEBqEKknOdw3u2MqZRlBb0kVzGuKM0hy2FAYNIsPxNs98HvjklEG9AekyW2GMy-8W3igt8m303ADcaYlNP5NblwZhPx5i-H5OP5aVFO0tn7y7Qcz1KbiXyfMlGZSnCuFKsUkzkUTjngkrHcoK1rZ6tcCGEKRq0DyWp0xqEAXqOpaA3ZkDz0d9vg9No22pvmN5der4MezxdTzTPOpco69r5nd8F_HTDu9cofQtu9pxljBZdCcNlRjz1lg48xoNO70GxNOGqg-uRQdw71yaHuHXaNu77RIOI_LQuQVPHsBxN-a1I</recordid><startdate>20190401</startdate><enddate>20190401</enddate><creator>Hao Li</creator><creator>Chen Shen</creator><creator>Yanxiang Zhao</creator><creator>Sahin, Gokhan</creator><creator>Hyeong-Ah Choi</creator><creator>Shah, Yogendra</creator><general>Editorial Department of Journal of Communications and Networks</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><general>한국통신학회</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>ACYCR</scope></search><sort><creationdate>20190401</creationdate><title>High entropy secrecy generation from wireless CIR</title><author>Hao Li ; Chen Shen ; Yanxiang Zhao ; Sahin, Gokhan ; Hyeong-Ah Choi ; Shah, Yogendra</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c364t-26bab655992b928417f9f158224aecddfcb4666a720cf182defafe615deab0d13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Coherence</topic><topic>Communication system security</topic><topic>Computer simulation</topic><topic>Data mining</topic><topic>Data models</topic><topic>Distillation</topic><topic>Entropy</topic><topic>Entropy extraction</topic><topic>Impulse response</topic><topic>Indoor environments</topic><topic>Optimization</topic><topic>physical layer security</topic><topic>Physical properties</topic><topic>Quantization (signal)</topic><topic>secrecy generation</topic><topic>Wireless communication</topic><topic>Wireless communications</topic><topic>wireless networks</topic><topic>전자/정보통신공학</topic><toplevel>online_resources</toplevel><creatorcontrib>Hao Li</creatorcontrib><creatorcontrib>Chen Shen</creatorcontrib><creatorcontrib>Yanxiang Zhao</creatorcontrib><creatorcontrib>Sahin, Gokhan</creatorcontrib><creatorcontrib>Hyeong-Ah Choi</creatorcontrib><creatorcontrib>Shah, Yogendra</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Korean Citation Index</collection><jtitle>Journal of communications and networks</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hao Li</au><au>Chen Shen</au><au>Yanxiang Zhao</au><au>Sahin, Gokhan</au><au>Hyeong-Ah Choi</au><au>Shah, Yogendra</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High entropy secrecy generation from wireless CIR</atitle><jtitle>Journal of communications and networks</jtitle><stitle>JCN</stitle><date>2019-04-01</date><risdate>2019</risdate><volume>21</volume><issue>2</issue><spage>177</spage><epage>191</epage><pages>177-191</pages><issn>1229-2370</issn><eissn>1976-5541</eissn><abstract>The physical characteristics of wireless channels, in particular the channel impulse response (CIR), have become an attractive source of shared secrecy between two communicating parties for many wireless applications. However, ensuring high-entropy secret bits from the CIR may not be always feasible, including in IoT and/or indoor environments, where the coherence time may not be easy to obtain, or mobility is limited. Many techniques have been developed to resolve the above problems, including privacy amplification for higher entropy output, and pre-processing for data distillation. In this paper, we develop a framework for extracting entropy from sequentially arriving channel impulse response observation samples, and propose algorithms for both online and offline versions of the problem. We fully characterize the optimal solutions to these problems through a series of analytic results, and establish the optimality of our proposed online and offline algorithms, namely A_EMSON and A_EMSOFF to solve the problem. We also verify the performance of the algorithms through comparisons with the existing related techniques, and evaluate their capability to ensure high-entropy under different channel models using MATLAB simulations.</abstract><cop>Seoul</cop><pub>Editorial Department of Journal of Communications and Networks</pub><doi>10.1109/JCN.2019.000019</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1229-2370
ispartof Journal of Communications and Networks, 2019, 21(2), , pp.177-191
issn 1229-2370
1976-5541
language eng
recordid cdi_crossref_primary_10_1109_JCN_2019_000019
source IEEE Electronic Library (IEL)
subjects Algorithms
Coherence
Communication system security
Computer simulation
Data mining
Data models
Distillation
Entropy
Entropy extraction
Impulse response
Indoor environments
Optimization
physical layer security
Physical properties
Quantization (signal)
secrecy generation
Wireless communication
Wireless communications
wireless networks
전자/정보통신공학
title High entropy secrecy generation from wireless CIR
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T01%3A53%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High%20entropy%20secrecy%20generation%20from%20wireless%20CIR&rft.jtitle=Journal%20of%20communications%20and%20networks&rft.au=Hao%20Li&rft.date=2019-04-01&rft.volume=21&rft.issue=2&rft.spage=177&rft.epage=191&rft.pages=177-191&rft.issn=1229-2370&rft.eissn=1976-5541&rft_id=info:doi/10.1109/JCN.2019.000019&rft_dat=%3Cproquest_cross%3E2227586658%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2227586658&rft_id=info:pmid/&rft_ieee_id=8718095&rfr_iscdi=true