High-Frequency SSVEP-BCI with Row-Column Dual-Frequency Encoding and Decoding Strategy for Reduced Training Data

Steady-state visual evoked potentials (SSVEP)-based brain-computer interfaces (BCIs) have the potential to be utilized in various fields due to their high accuracies and information transfer rates (ITR). High-frequency (HF) visual stimuli have shown promise in reducing visual fatigue and enhancing u...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of biomedical and health informatics 2024-12, p.1-12
Hauptverfasser: Ke, Yufeng, Chen, Xiaohe, Xu, Wei, Wang, Tao, Shen, Shuaishuai, Ming, Dong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12
container_issue
container_start_page 1
container_title IEEE journal of biomedical and health informatics
container_volume
creator Ke, Yufeng
Chen, Xiaohe
Xu, Wei
Wang, Tao
Shen, Shuaishuai
Ming, Dong
description Steady-state visual evoked potentials (SSVEP)-based brain-computer interfaces (BCIs) have the potential to be utilized in various fields due to their high accuracies and information transfer rates (ITR). High-frequency (HF) visual stimuli have shown promise in reducing visual fatigue and enhancing user comfort. However, these HF-SSVEP-BCIs often face limitations in the number of commands and typically require extensive individual training data to achieve high performance. In this study, we proposed a row-column dual-frequency encoding and decoding method using HF stimulation to develop a comfortable BCI system that supports multiple commands and reduces training costs. We arranged 20 targets in a matrix of five rows and four columns, with each target modulated by left-and-right field stimulation using two frequency-phase combinations. Targets in each row or column share a unique frequency-phase combination, allowing EEG data from the same row or column to be used collectively to train a row/column index decoding model for target identification. To evaluate the performance of our method, we constructed a 20-target asynchronous robotic arm control system with the adaptive window method. With only four training trials per target, the online system achieved an ITR of 105.14±14.15 bits/min, a true positive rate of 98.18±2.87%, a false positive rate of 7.39±6.73%, and a classification accuracy of 91.88±5.75%, with an average data length of 925.70±45.44 ms. These results indicate that the proposed protocol can deliver accurate and rapid command outputs for a comfortable SSVEP-based BCI with minimal training data and fewer frequencies.
doi_str_mv 10.1109/JBHI.2024.3514794
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JBHI_2024_3514794</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10794675</ieee_id><sourcerecordid>10_1109_JBHI_2024_3514794</sourcerecordid><originalsourceid>FETCH-LOGICAL-c635-19b766e57495612f79db8b5e41ac768fac6593057803786b2dd45acabac90de53</originalsourceid><addsrcrecordid>eNpNkF1rwjAUhsPYYOL8AYNd5A_EJWk-L2fV1SFsqOy2pEmqHdq6tEX892vRgefmfLzvey4eAJ4JHhOC9evHJFmMKaZsHHHCpGZ3YECJUIhSrO7_Z6LZIxjV9Q_uSnUnLQbgmBTbHZoH_9v60p7hev09-0KTeAFPRbODq-qE4mrfHko4bc3-xjgrbeWKcgtN6eDUX5d1E0zjt2eYVwGuvGutd3ATTFH26tQ05gk85GZf-9G1D8FmPtvECVp-vi_ityWyIuKI6EwK4blkmgtCc6ldpjLuGTFWCpUbK7iOMJcKR1KJjDrHuLEmM1Zj53k0BOTy1oaqroPP02MoDiacU4LTHlraQ0t7aOkVWpd5uWQK7_2Nv9OE5NEfnnJoDw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>High-Frequency SSVEP-BCI with Row-Column Dual-Frequency Encoding and Decoding Strategy for Reduced Training Data</title><source>IEEE Electronic Library (IEL)</source><creator>Ke, Yufeng ; Chen, Xiaohe ; Xu, Wei ; Wang, Tao ; Shen, Shuaishuai ; Ming, Dong</creator><creatorcontrib>Ke, Yufeng ; Chen, Xiaohe ; Xu, Wei ; Wang, Tao ; Shen, Shuaishuai ; Ming, Dong</creatorcontrib><description>Steady-state visual evoked potentials (SSVEP)-based brain-computer interfaces (BCIs) have the potential to be utilized in various fields due to their high accuracies and information transfer rates (ITR). High-frequency (HF) visual stimuli have shown promise in reducing visual fatigue and enhancing user comfort. However, these HF-SSVEP-BCIs often face limitations in the number of commands and typically require extensive individual training data to achieve high performance. In this study, we proposed a row-column dual-frequency encoding and decoding method using HF stimulation to develop a comfortable BCI system that supports multiple commands and reduces training costs. We arranged 20 targets in a matrix of five rows and four columns, with each target modulated by left-and-right field stimulation using two frequency-phase combinations. Targets in each row or column share a unique frequency-phase combination, allowing EEG data from the same row or column to be used collectively to train a row/column index decoding model for target identification. To evaluate the performance of our method, we constructed a 20-target asynchronous robotic arm control system with the adaptive window method. With only four training trials per target, the online system achieved an ITR of 105.14±14.15 bits/min, a true positive rate of 98.18±2.87%, a false positive rate of 7.39±6.73%, and a classification accuracy of 91.88±5.75%, with an average data length of 925.70±45.44 ms. These results indicate that the proposed protocol can deliver accurate and rapid command outputs for a comfortable SSVEP-based BCI with minimal training data and fewer frequencies.</description><identifier>ISSN: 2168-2194</identifier><identifier>EISSN: 2168-2208</identifier><identifier>DOI: 10.1109/JBHI.2024.3514794</identifier><identifier>CODEN: IJBHA9</identifier><language>eng</language><publisher>IEEE</publisher><subject>Brain-computer interface (BCI) ; dual-frequency SSVEP ; EEG ; high-frequency SSVEP ; steady-state visual evoked potential (SSVEP)</subject><ispartof>IEEE journal of biomedical and health informatics, 2024-12, p.1-12</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10794675$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10794675$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ke, Yufeng</creatorcontrib><creatorcontrib>Chen, Xiaohe</creatorcontrib><creatorcontrib>Xu, Wei</creatorcontrib><creatorcontrib>Wang, Tao</creatorcontrib><creatorcontrib>Shen, Shuaishuai</creatorcontrib><creatorcontrib>Ming, Dong</creatorcontrib><title>High-Frequency SSVEP-BCI with Row-Column Dual-Frequency Encoding and Decoding Strategy for Reduced Training Data</title><title>IEEE journal of biomedical and health informatics</title><addtitle>JBHI</addtitle><description>Steady-state visual evoked potentials (SSVEP)-based brain-computer interfaces (BCIs) have the potential to be utilized in various fields due to their high accuracies and information transfer rates (ITR). High-frequency (HF) visual stimuli have shown promise in reducing visual fatigue and enhancing user comfort. However, these HF-SSVEP-BCIs often face limitations in the number of commands and typically require extensive individual training data to achieve high performance. In this study, we proposed a row-column dual-frequency encoding and decoding method using HF stimulation to develop a comfortable BCI system that supports multiple commands and reduces training costs. We arranged 20 targets in a matrix of five rows and four columns, with each target modulated by left-and-right field stimulation using two frequency-phase combinations. Targets in each row or column share a unique frequency-phase combination, allowing EEG data from the same row or column to be used collectively to train a row/column index decoding model for target identification. To evaluate the performance of our method, we constructed a 20-target asynchronous robotic arm control system with the adaptive window method. With only four training trials per target, the online system achieved an ITR of 105.14±14.15 bits/min, a true positive rate of 98.18±2.87%, a false positive rate of 7.39±6.73%, and a classification accuracy of 91.88±5.75%, with an average data length of 925.70±45.44 ms. These results indicate that the proposed protocol can deliver accurate and rapid command outputs for a comfortable SSVEP-based BCI with minimal training data and fewer frequencies.</description><subject>Brain-computer interface (BCI)</subject><subject>dual-frequency SSVEP</subject><subject>EEG</subject><subject>high-frequency SSVEP</subject><subject>steady-state visual evoked potential (SSVEP)</subject><issn>2168-2194</issn><issn>2168-2208</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkF1rwjAUhsPYYOL8AYNd5A_EJWk-L2fV1SFsqOy2pEmqHdq6tEX892vRgefmfLzvey4eAJ4JHhOC9evHJFmMKaZsHHHCpGZ3YECJUIhSrO7_Z6LZIxjV9Q_uSnUnLQbgmBTbHZoH_9v60p7hev09-0KTeAFPRbODq-qE4mrfHko4bc3-xjgrbeWKcgtN6eDUX5d1E0zjt2eYVwGuvGutd3ATTFH26tQ05gk85GZf-9G1D8FmPtvECVp-vi_ityWyIuKI6EwK4blkmgtCc6ldpjLuGTFWCpUbK7iOMJcKR1KJjDrHuLEmM1Zj53k0BOTy1oaqroPP02MoDiacU4LTHlraQ0t7aOkVWpd5uWQK7_2Nv9OE5NEfnnJoDw</recordid><startdate>20241211</startdate><enddate>20241211</enddate><creator>Ke, Yufeng</creator><creator>Chen, Xiaohe</creator><creator>Xu, Wei</creator><creator>Wang, Tao</creator><creator>Shen, Shuaishuai</creator><creator>Ming, Dong</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20241211</creationdate><title>High-Frequency SSVEP-BCI with Row-Column Dual-Frequency Encoding and Decoding Strategy for Reduced Training Data</title><author>Ke, Yufeng ; Chen, Xiaohe ; Xu, Wei ; Wang, Tao ; Shen, Shuaishuai ; Ming, Dong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c635-19b766e57495612f79db8b5e41ac768fac6593057803786b2dd45acabac90de53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Brain-computer interface (BCI)</topic><topic>dual-frequency SSVEP</topic><topic>EEG</topic><topic>high-frequency SSVEP</topic><topic>steady-state visual evoked potential (SSVEP)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ke, Yufeng</creatorcontrib><creatorcontrib>Chen, Xiaohe</creatorcontrib><creatorcontrib>Xu, Wei</creatorcontrib><creatorcontrib>Wang, Tao</creatorcontrib><creatorcontrib>Shen, Shuaishuai</creatorcontrib><creatorcontrib>Ming, Dong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE journal of biomedical and health informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ke, Yufeng</au><au>Chen, Xiaohe</au><au>Xu, Wei</au><au>Wang, Tao</au><au>Shen, Shuaishuai</au><au>Ming, Dong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-Frequency SSVEP-BCI with Row-Column Dual-Frequency Encoding and Decoding Strategy for Reduced Training Data</atitle><jtitle>IEEE journal of biomedical and health informatics</jtitle><stitle>JBHI</stitle><date>2024-12-11</date><risdate>2024</risdate><spage>1</spage><epage>12</epage><pages>1-12</pages><issn>2168-2194</issn><eissn>2168-2208</eissn><coden>IJBHA9</coden><abstract>Steady-state visual evoked potentials (SSVEP)-based brain-computer interfaces (BCIs) have the potential to be utilized in various fields due to their high accuracies and information transfer rates (ITR). High-frequency (HF) visual stimuli have shown promise in reducing visual fatigue and enhancing user comfort. However, these HF-SSVEP-BCIs often face limitations in the number of commands and typically require extensive individual training data to achieve high performance. In this study, we proposed a row-column dual-frequency encoding and decoding method using HF stimulation to develop a comfortable BCI system that supports multiple commands and reduces training costs. We arranged 20 targets in a matrix of five rows and four columns, with each target modulated by left-and-right field stimulation using two frequency-phase combinations. Targets in each row or column share a unique frequency-phase combination, allowing EEG data from the same row or column to be used collectively to train a row/column index decoding model for target identification. To evaluate the performance of our method, we constructed a 20-target asynchronous robotic arm control system with the adaptive window method. With only four training trials per target, the online system achieved an ITR of 105.14±14.15 bits/min, a true positive rate of 98.18±2.87%, a false positive rate of 7.39±6.73%, and a classification accuracy of 91.88±5.75%, with an average data length of 925.70±45.44 ms. These results indicate that the proposed protocol can deliver accurate and rapid command outputs for a comfortable SSVEP-based BCI with minimal training data and fewer frequencies.</abstract><pub>IEEE</pub><doi>10.1109/JBHI.2024.3514794</doi><tpages>12</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2168-2194
ispartof IEEE journal of biomedical and health informatics, 2024-12, p.1-12
issn 2168-2194
2168-2208
language eng
recordid cdi_crossref_primary_10_1109_JBHI_2024_3514794
source IEEE Electronic Library (IEL)
subjects Brain-computer interface (BCI)
dual-frequency SSVEP
EEG
high-frequency SSVEP
steady-state visual evoked potential (SSVEP)
title High-Frequency SSVEP-BCI with Row-Column Dual-Frequency Encoding and Decoding Strategy for Reduced Training Data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T21%3A49%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-Frequency%20SSVEP-BCI%20with%20Row-Column%20Dual-Frequency%20Encoding%20and%20Decoding%20Strategy%20for%20Reduced%20Training%20Data&rft.jtitle=IEEE%20journal%20of%20biomedical%20and%20health%20informatics&rft.au=Ke,%20Yufeng&rft.date=2024-12-11&rft.spage=1&rft.epage=12&rft.pages=1-12&rft.issn=2168-2194&rft.eissn=2168-2208&rft.coden=IJBHA9&rft_id=info:doi/10.1109/JBHI.2024.3514794&rft_dat=%3Ccrossref_RIE%3E10_1109_JBHI_2024_3514794%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10794675&rfr_iscdi=true