Ankle Moment Estimation Based on A Novel Distributed Plantar Pressure Sensing System
Ankle moment plays an important role in human gait analysis, patients' rehabilitation process monitoring, and the human-machine interaction control of exoskeleton robots. However, current ankle moment estimation methods mainly rely on inverse dynamics (ID) based on optical motion capture system...
Gespeichert in:
Veröffentlicht in: | IEEE journal of biomedical and health informatics 2024-11, Vol.28 (11), p.6548-6556 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6556 |
---|---|
container_issue | 11 |
container_start_page | 6548 |
container_title | IEEE journal of biomedical and health informatics |
container_volume | 28 |
creator | Du, Mingyu Lv, Bowen Fan, Bingfei Li, Xiaoling Yu, Junze Yi, Fugang Liu, Tao Cai, Shibo |
description | Ankle moment plays an important role in human gait analysis, patients' rehabilitation process monitoring, and the human-machine interaction control of exoskeleton robots. However, current ankle moment estimation methods mainly rely on inverse dynamics (ID) based on optical motion capture system (OMC) and force plate. These methods rely on fixed instruments in the laboratory, which are difficult to be applied to the control of exoskeleton robots. To solve this problem, this paper developed a new distributed plantar pressure system and proposed an ankle plantar flexion moment estimation method using the plantar pressure system. We integrated eight pressure sensors in each insole to collect the pressure data of the key area of the foot and then used the plantar pressure data to train four neural networks to obtain the ankle moment. The performance of the models was evaluated using normalized root mean square error (NRMSE) and cross-correlation coefficient (ρ). During experiments, eight subjects were recruited for the overground walking tests, and OMC and force plate were used as the gold standard. The results indicate that the Genetic algorithm - Gated recurrent unit estimation algorithm (GA-GRU) was the best estimation model which achieved the highest accuracy in generalized ankle moment estimation (NRMSE = 7.23%, ρ = 0.85) compared with the other models. The designed novel distributed plantar pressure system and the proposed method could serve as a joint moment estimation approach in wearable robot control and human motion state monitoring. |
doi_str_mv | 10.1109/JBHI.2024.3444818 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JBHI_2024_3444818</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10638175</ieee_id><sourcerecordid>3093895841</sourcerecordid><originalsourceid>FETCH-LOGICAL-c204t-e5399d8bb9e05d9c9ef4423590854b0b8a924e4595105e93441fba123199739e3</originalsourceid><addsrcrecordid>eNpNkMtOAkEQRTtGIwT5ABNjeukG7Cd0LQFRMKgk4Hoyw9SY0Xlgd48Jf28TwFibqtzcuqk6hFxz1uecwf3zeDbvCyZUXyqlDDdnpC34wPSEYOb8NHNQLdJ17pOFMkGCwSVpSeCaGQZtsh5VXwXSl7rEytOp83kZ-7yu6Dh2mNIwjOhr_YMFfcidt3nS-CAvi7jysaVLi841FukKK5dXH3S1cx7LK3KRxYXD7rF3yPvjdD2Z9RZvT_PJaNHbCKZ8D7UESE2SADKdwgYwU0pIDcxolbDExCAUKg2aM40Q3uRZEnMhOcBQAsoOuTvkbm393aDzUZm7DRbhOqwbF0kG0oA2igcrP1g3tnbOYhZtbXjV7iLOoj3PaM8z2vOMjjzDzu0xvklKTP82TvSC4eZgyBHxX-BAGj7U8hcYF3e5</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3093895841</pqid></control><display><type>article</type><title>Ankle Moment Estimation Based on A Novel Distributed Plantar Pressure Sensing System</title><source>IEEE Electronic Library (IEL)</source><creator>Du, Mingyu ; Lv, Bowen ; Fan, Bingfei ; Li, Xiaoling ; Yu, Junze ; Yi, Fugang ; Liu, Tao ; Cai, Shibo</creator><creatorcontrib>Du, Mingyu ; Lv, Bowen ; Fan, Bingfei ; Li, Xiaoling ; Yu, Junze ; Yi, Fugang ; Liu, Tao ; Cai, Shibo</creatorcontrib><description>Ankle moment plays an important role in human gait analysis, patients' rehabilitation process monitoring, and the human-machine interaction control of exoskeleton robots. However, current ankle moment estimation methods mainly rely on inverse dynamics (ID) based on optical motion capture system (OMC) and force plate. These methods rely on fixed instruments in the laboratory, which are difficult to be applied to the control of exoskeleton robots. To solve this problem, this paper developed a new distributed plantar pressure system and proposed an ankle plantar flexion moment estimation method using the plantar pressure system. We integrated eight pressure sensors in each insole to collect the pressure data of the key area of the foot and then used the plantar pressure data to train four neural networks to obtain the ankle moment. The performance of the models was evaluated using normalized root mean square error (NRMSE) and cross-correlation coefficient (ρ). During experiments, eight subjects were recruited for the overground walking tests, and OMC and force plate were used as the gold standard. The results indicate that the Genetic algorithm - Gated recurrent unit estimation algorithm (GA-GRU) was the best estimation model which achieved the highest accuracy in generalized ankle moment estimation (NRMSE = 7.23%, ρ = 0.85) compared with the other models. The designed novel distributed plantar pressure system and the proposed method could serve as a joint moment estimation approach in wearable robot control and human motion state monitoring.</description><identifier>ISSN: 2168-2194</identifier><identifier>ISSN: 2168-2208</identifier><identifier>EISSN: 2168-2208</identifier><identifier>DOI: 10.1109/JBHI.2024.3444818</identifier><identifier>PMID: 39150809</identifier><identifier>CODEN: IJBHA9</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Adult ; Algorithms ; Ankle ; Ankle - physiology ; Ankle Joint - physiology ; Biomechanical Phenomena - physiology ; Estimation ; Female ; Foot ; Foot - physiology ; Gait - physiology ; Gait Analysis - instrumentation ; Gait Analysis - methods ; gated recurrent unit (GRU) ; genetic algorithm (GA) ; Genetic algorithms ; Humans ; Joint moment estimation ; Logic gates ; Male ; Neural networks ; Neural Networks, Computer ; plantar pressure ; Pressure ; Sensors ; Signal Processing, Computer-Assisted ; smart insoles ; Young Adult</subject><ispartof>IEEE journal of biomedical and health informatics, 2024-11, Vol.28 (11), p.6548-6556</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c204t-e5399d8bb9e05d9c9ef4423590854b0b8a924e4595105e93441fba123199739e3</cites><orcidid>0009-0001-0037-1085 ; 0000-0003-0174-3300 ; 0000-0002-2797-0264 ; 0009-0000-1185-3218 ; 0000-0002-9531-3549</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10638175$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,778,782,794,27907,27908,54741</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10638175$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39150809$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Du, Mingyu</creatorcontrib><creatorcontrib>Lv, Bowen</creatorcontrib><creatorcontrib>Fan, Bingfei</creatorcontrib><creatorcontrib>Li, Xiaoling</creatorcontrib><creatorcontrib>Yu, Junze</creatorcontrib><creatorcontrib>Yi, Fugang</creatorcontrib><creatorcontrib>Liu, Tao</creatorcontrib><creatorcontrib>Cai, Shibo</creatorcontrib><title>Ankle Moment Estimation Based on A Novel Distributed Plantar Pressure Sensing System</title><title>IEEE journal of biomedical and health informatics</title><addtitle>JBHI</addtitle><addtitle>IEEE J Biomed Health Inform</addtitle><description>Ankle moment plays an important role in human gait analysis, patients' rehabilitation process monitoring, and the human-machine interaction control of exoskeleton robots. However, current ankle moment estimation methods mainly rely on inverse dynamics (ID) based on optical motion capture system (OMC) and force plate. These methods rely on fixed instruments in the laboratory, which are difficult to be applied to the control of exoskeleton robots. To solve this problem, this paper developed a new distributed plantar pressure system and proposed an ankle plantar flexion moment estimation method using the plantar pressure system. We integrated eight pressure sensors in each insole to collect the pressure data of the key area of the foot and then used the plantar pressure data to train four neural networks to obtain the ankle moment. The performance of the models was evaluated using normalized root mean square error (NRMSE) and cross-correlation coefficient (ρ). During experiments, eight subjects were recruited for the overground walking tests, and OMC and force plate were used as the gold standard. The results indicate that the Genetic algorithm - Gated recurrent unit estimation algorithm (GA-GRU) was the best estimation model which achieved the highest accuracy in generalized ankle moment estimation (NRMSE = 7.23%, ρ = 0.85) compared with the other models. The designed novel distributed plantar pressure system and the proposed method could serve as a joint moment estimation approach in wearable robot control and human motion state monitoring.</description><subject>Adult</subject><subject>Algorithms</subject><subject>Ankle</subject><subject>Ankle - physiology</subject><subject>Ankle Joint - physiology</subject><subject>Biomechanical Phenomena - physiology</subject><subject>Estimation</subject><subject>Female</subject><subject>Foot</subject><subject>Foot - physiology</subject><subject>Gait - physiology</subject><subject>Gait Analysis - instrumentation</subject><subject>Gait Analysis - methods</subject><subject>gated recurrent unit (GRU)</subject><subject>genetic algorithm (GA)</subject><subject>Genetic algorithms</subject><subject>Humans</subject><subject>Joint moment estimation</subject><subject>Logic gates</subject><subject>Male</subject><subject>Neural networks</subject><subject>Neural Networks, Computer</subject><subject>plantar pressure</subject><subject>Pressure</subject><subject>Sensors</subject><subject>Signal Processing, Computer-Assisted</subject><subject>smart insoles</subject><subject>Young Adult</subject><issn>2168-2194</issn><issn>2168-2208</issn><issn>2168-2208</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNpNkMtOAkEQRTtGIwT5ABNjeukG7Cd0LQFRMKgk4Hoyw9SY0Xlgd48Jf28TwFibqtzcuqk6hFxz1uecwf3zeDbvCyZUXyqlDDdnpC34wPSEYOb8NHNQLdJ17pOFMkGCwSVpSeCaGQZtsh5VXwXSl7rEytOp83kZ-7yu6Dh2mNIwjOhr_YMFfcidt3nS-CAvi7jysaVLi841FukKK5dXH3S1cx7LK3KRxYXD7rF3yPvjdD2Z9RZvT_PJaNHbCKZ8D7UESE2SADKdwgYwU0pIDcxolbDExCAUKg2aM40Q3uRZEnMhOcBQAsoOuTvkbm393aDzUZm7DRbhOqwbF0kG0oA2igcrP1g3tnbOYhZtbXjV7iLOoj3PaM8z2vOMjjzDzu0xvklKTP82TvSC4eZgyBHxX-BAGj7U8hcYF3e5</recordid><startdate>202411</startdate><enddate>202411</enddate><creator>Du, Mingyu</creator><creator>Lv, Bowen</creator><creator>Fan, Bingfei</creator><creator>Li, Xiaoling</creator><creator>Yu, Junze</creator><creator>Yi, Fugang</creator><creator>Liu, Tao</creator><creator>Cai, Shibo</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0009-0001-0037-1085</orcidid><orcidid>https://orcid.org/0000-0003-0174-3300</orcidid><orcidid>https://orcid.org/0000-0002-2797-0264</orcidid><orcidid>https://orcid.org/0009-0000-1185-3218</orcidid><orcidid>https://orcid.org/0000-0002-9531-3549</orcidid></search><sort><creationdate>202411</creationdate><title>Ankle Moment Estimation Based on A Novel Distributed Plantar Pressure Sensing System</title><author>Du, Mingyu ; Lv, Bowen ; Fan, Bingfei ; Li, Xiaoling ; Yu, Junze ; Yi, Fugang ; Liu, Tao ; Cai, Shibo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c204t-e5399d8bb9e05d9c9ef4423590854b0b8a924e4595105e93441fba123199739e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adult</topic><topic>Algorithms</topic><topic>Ankle</topic><topic>Ankle - physiology</topic><topic>Ankle Joint - physiology</topic><topic>Biomechanical Phenomena - physiology</topic><topic>Estimation</topic><topic>Female</topic><topic>Foot</topic><topic>Foot - physiology</topic><topic>Gait - physiology</topic><topic>Gait Analysis - instrumentation</topic><topic>Gait Analysis - methods</topic><topic>gated recurrent unit (GRU)</topic><topic>genetic algorithm (GA)</topic><topic>Genetic algorithms</topic><topic>Humans</topic><topic>Joint moment estimation</topic><topic>Logic gates</topic><topic>Male</topic><topic>Neural networks</topic><topic>Neural Networks, Computer</topic><topic>plantar pressure</topic><topic>Pressure</topic><topic>Sensors</topic><topic>Signal Processing, Computer-Assisted</topic><topic>smart insoles</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Du, Mingyu</creatorcontrib><creatorcontrib>Lv, Bowen</creatorcontrib><creatorcontrib>Fan, Bingfei</creatorcontrib><creatorcontrib>Li, Xiaoling</creatorcontrib><creatorcontrib>Yu, Junze</creatorcontrib><creatorcontrib>Yi, Fugang</creatorcontrib><creatorcontrib>Liu, Tao</creatorcontrib><creatorcontrib>Cai, Shibo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE journal of biomedical and health informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Du, Mingyu</au><au>Lv, Bowen</au><au>Fan, Bingfei</au><au>Li, Xiaoling</au><au>Yu, Junze</au><au>Yi, Fugang</au><au>Liu, Tao</au><au>Cai, Shibo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ankle Moment Estimation Based on A Novel Distributed Plantar Pressure Sensing System</atitle><jtitle>IEEE journal of biomedical and health informatics</jtitle><stitle>JBHI</stitle><addtitle>IEEE J Biomed Health Inform</addtitle><date>2024-11</date><risdate>2024</risdate><volume>28</volume><issue>11</issue><spage>6548</spage><epage>6556</epage><pages>6548-6556</pages><issn>2168-2194</issn><issn>2168-2208</issn><eissn>2168-2208</eissn><coden>IJBHA9</coden><abstract>Ankle moment plays an important role in human gait analysis, patients' rehabilitation process monitoring, and the human-machine interaction control of exoskeleton robots. However, current ankle moment estimation methods mainly rely on inverse dynamics (ID) based on optical motion capture system (OMC) and force plate. These methods rely on fixed instruments in the laboratory, which are difficult to be applied to the control of exoskeleton robots. To solve this problem, this paper developed a new distributed plantar pressure system and proposed an ankle plantar flexion moment estimation method using the plantar pressure system. We integrated eight pressure sensors in each insole to collect the pressure data of the key area of the foot and then used the plantar pressure data to train four neural networks to obtain the ankle moment. The performance of the models was evaluated using normalized root mean square error (NRMSE) and cross-correlation coefficient (ρ). During experiments, eight subjects were recruited for the overground walking tests, and OMC and force plate were used as the gold standard. The results indicate that the Genetic algorithm - Gated recurrent unit estimation algorithm (GA-GRU) was the best estimation model which achieved the highest accuracy in generalized ankle moment estimation (NRMSE = 7.23%, ρ = 0.85) compared with the other models. The designed novel distributed plantar pressure system and the proposed method could serve as a joint moment estimation approach in wearable robot control and human motion state monitoring.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>39150809</pmid><doi>10.1109/JBHI.2024.3444818</doi><tpages>9</tpages><orcidid>https://orcid.org/0009-0001-0037-1085</orcidid><orcidid>https://orcid.org/0000-0003-0174-3300</orcidid><orcidid>https://orcid.org/0000-0002-2797-0264</orcidid><orcidid>https://orcid.org/0009-0000-1185-3218</orcidid><orcidid>https://orcid.org/0000-0002-9531-3549</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2168-2194 |
ispartof | IEEE journal of biomedical and health informatics, 2024-11, Vol.28 (11), p.6548-6556 |
issn | 2168-2194 2168-2208 2168-2208 |
language | eng |
recordid | cdi_crossref_primary_10_1109_JBHI_2024_3444818 |
source | IEEE Electronic Library (IEL) |
subjects | Adult Algorithms Ankle Ankle - physiology Ankle Joint - physiology Biomechanical Phenomena - physiology Estimation Female Foot Foot - physiology Gait - physiology Gait Analysis - instrumentation Gait Analysis - methods gated recurrent unit (GRU) genetic algorithm (GA) Genetic algorithms Humans Joint moment estimation Logic gates Male Neural networks Neural Networks, Computer plantar pressure Pressure Sensors Signal Processing, Computer-Assisted smart insoles Young Adult |
title | Ankle Moment Estimation Based on A Novel Distributed Plantar Pressure Sensing System |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T03%3A49%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ankle%20Moment%20Estimation%20Based%20on%20A%20Novel%20Distributed%20Plantar%20Pressure%20Sensing%20System&rft.jtitle=IEEE%20journal%20of%20biomedical%20and%20health%20informatics&rft.au=Du,%20Mingyu&rft.date=2024-11&rft.volume=28&rft.issue=11&rft.spage=6548&rft.epage=6556&rft.pages=6548-6556&rft.issn=2168-2194&rft.eissn=2168-2208&rft.coden=IJBHA9&rft_id=info:doi/10.1109/JBHI.2024.3444818&rft_dat=%3Cproquest_RIE%3E3093895841%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3093895841&rft_id=info:pmid/39150809&rft_ieee_id=10638175&rfr_iscdi=true |