Ankle Moment Estimation Based on A Novel Distributed Plantar Pressure Sensing System

Ankle moment plays an important role in human gait analysis, patients' rehabilitation process monitoring, and the human-machine interaction control of exoskeleton robots. However, current ankle moment estimation methods mainly rely on inverse dynamics (ID) based on optical motion capture system...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of biomedical and health informatics 2024-11, Vol.28 (11), p.6548-6556
Hauptverfasser: Du, Mingyu, Lv, Bowen, Fan, Bingfei, Li, Xiaoling, Yu, Junze, Yi, Fugang, Liu, Tao, Cai, Shibo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6556
container_issue 11
container_start_page 6548
container_title IEEE journal of biomedical and health informatics
container_volume 28
creator Du, Mingyu
Lv, Bowen
Fan, Bingfei
Li, Xiaoling
Yu, Junze
Yi, Fugang
Liu, Tao
Cai, Shibo
description Ankle moment plays an important role in human gait analysis, patients' rehabilitation process monitoring, and the human-machine interaction control of exoskeleton robots. However, current ankle moment estimation methods mainly rely on inverse dynamics (ID) based on optical motion capture system (OMC) and force plate. These methods rely on fixed instruments in the laboratory, which are difficult to be applied to the control of exoskeleton robots. To solve this problem, this paper developed a new distributed plantar pressure system and proposed an ankle plantar flexion moment estimation method using the plantar pressure system. We integrated eight pressure sensors in each insole to collect the pressure data of the key area of the foot and then used the plantar pressure data to train four neural networks to obtain the ankle moment. The performance of the models was evaluated using normalized root mean square error (NRMSE) and cross-correlation coefficient (ρ). During experiments, eight subjects were recruited for the overground walking tests, and OMC and force plate were used as the gold standard. The results indicate that the Genetic algorithm - Gated recurrent unit estimation algorithm (GA-GRU) was the best estimation model which achieved the highest accuracy in generalized ankle moment estimation (NRMSE = 7.23%, ρ = 0.85) compared with the other models. The designed novel distributed plantar pressure system and the proposed method could serve as a joint moment estimation approach in wearable robot control and human motion state monitoring.
doi_str_mv 10.1109/JBHI.2024.3444818
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JBHI_2024_3444818</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10638175</ieee_id><sourcerecordid>3093895841</sourcerecordid><originalsourceid>FETCH-LOGICAL-c204t-e5399d8bb9e05d9c9ef4423590854b0b8a924e4595105e93441fba123199739e3</originalsourceid><addsrcrecordid>eNpNkMtOAkEQRTtGIwT5ABNjeukG7Cd0LQFRMKgk4Hoyw9SY0Xlgd48Jf28TwFibqtzcuqk6hFxz1uecwf3zeDbvCyZUXyqlDDdnpC34wPSEYOb8NHNQLdJ17pOFMkGCwSVpSeCaGQZtsh5VXwXSl7rEytOp83kZ-7yu6Dh2mNIwjOhr_YMFfcidt3nS-CAvi7jysaVLi841FukKK5dXH3S1cx7LK3KRxYXD7rF3yPvjdD2Z9RZvT_PJaNHbCKZ8D7UESE2SADKdwgYwU0pIDcxolbDExCAUKg2aM40Q3uRZEnMhOcBQAsoOuTvkbm393aDzUZm7DRbhOqwbF0kG0oA2igcrP1g3tnbOYhZtbXjV7iLOoj3PaM8z2vOMjjzDzu0xvklKTP82TvSC4eZgyBHxX-BAGj7U8hcYF3e5</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3093895841</pqid></control><display><type>article</type><title>Ankle Moment Estimation Based on A Novel Distributed Plantar Pressure Sensing System</title><source>IEEE Electronic Library (IEL)</source><creator>Du, Mingyu ; Lv, Bowen ; Fan, Bingfei ; Li, Xiaoling ; Yu, Junze ; Yi, Fugang ; Liu, Tao ; Cai, Shibo</creator><creatorcontrib>Du, Mingyu ; Lv, Bowen ; Fan, Bingfei ; Li, Xiaoling ; Yu, Junze ; Yi, Fugang ; Liu, Tao ; Cai, Shibo</creatorcontrib><description>Ankle moment plays an important role in human gait analysis, patients' rehabilitation process monitoring, and the human-machine interaction control of exoskeleton robots. However, current ankle moment estimation methods mainly rely on inverse dynamics (ID) based on optical motion capture system (OMC) and force plate. These methods rely on fixed instruments in the laboratory, which are difficult to be applied to the control of exoskeleton robots. To solve this problem, this paper developed a new distributed plantar pressure system and proposed an ankle plantar flexion moment estimation method using the plantar pressure system. We integrated eight pressure sensors in each insole to collect the pressure data of the key area of the foot and then used the plantar pressure data to train four neural networks to obtain the ankle moment. The performance of the models was evaluated using normalized root mean square error (NRMSE) and cross-correlation coefficient (ρ). During experiments, eight subjects were recruited for the overground walking tests, and OMC and force plate were used as the gold standard. The results indicate that the Genetic algorithm - Gated recurrent unit estimation algorithm (GA-GRU) was the best estimation model which achieved the highest accuracy in generalized ankle moment estimation (NRMSE = 7.23%, ρ = 0.85) compared with the other models. The designed novel distributed plantar pressure system and the proposed method could serve as a joint moment estimation approach in wearable robot control and human motion state monitoring.</description><identifier>ISSN: 2168-2194</identifier><identifier>ISSN: 2168-2208</identifier><identifier>EISSN: 2168-2208</identifier><identifier>DOI: 10.1109/JBHI.2024.3444818</identifier><identifier>PMID: 39150809</identifier><identifier>CODEN: IJBHA9</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Adult ; Algorithms ; Ankle ; Ankle - physiology ; Ankle Joint - physiology ; Biomechanical Phenomena - physiology ; Estimation ; Female ; Foot ; Foot - physiology ; Gait - physiology ; Gait Analysis - instrumentation ; Gait Analysis - methods ; gated recurrent unit (GRU) ; genetic algorithm (GA) ; Genetic algorithms ; Humans ; Joint moment estimation ; Logic gates ; Male ; Neural networks ; Neural Networks, Computer ; plantar pressure ; Pressure ; Sensors ; Signal Processing, Computer-Assisted ; smart insoles ; Young Adult</subject><ispartof>IEEE journal of biomedical and health informatics, 2024-11, Vol.28 (11), p.6548-6556</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c204t-e5399d8bb9e05d9c9ef4423590854b0b8a924e4595105e93441fba123199739e3</cites><orcidid>0009-0001-0037-1085 ; 0000-0003-0174-3300 ; 0000-0002-2797-0264 ; 0009-0000-1185-3218 ; 0000-0002-9531-3549</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10638175$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,778,782,794,27907,27908,54741</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10638175$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39150809$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Du, Mingyu</creatorcontrib><creatorcontrib>Lv, Bowen</creatorcontrib><creatorcontrib>Fan, Bingfei</creatorcontrib><creatorcontrib>Li, Xiaoling</creatorcontrib><creatorcontrib>Yu, Junze</creatorcontrib><creatorcontrib>Yi, Fugang</creatorcontrib><creatorcontrib>Liu, Tao</creatorcontrib><creatorcontrib>Cai, Shibo</creatorcontrib><title>Ankle Moment Estimation Based on A Novel Distributed Plantar Pressure Sensing System</title><title>IEEE journal of biomedical and health informatics</title><addtitle>JBHI</addtitle><addtitle>IEEE J Biomed Health Inform</addtitle><description>Ankle moment plays an important role in human gait analysis, patients' rehabilitation process monitoring, and the human-machine interaction control of exoskeleton robots. However, current ankle moment estimation methods mainly rely on inverse dynamics (ID) based on optical motion capture system (OMC) and force plate. These methods rely on fixed instruments in the laboratory, which are difficult to be applied to the control of exoskeleton robots. To solve this problem, this paper developed a new distributed plantar pressure system and proposed an ankle plantar flexion moment estimation method using the plantar pressure system. We integrated eight pressure sensors in each insole to collect the pressure data of the key area of the foot and then used the plantar pressure data to train four neural networks to obtain the ankle moment. The performance of the models was evaluated using normalized root mean square error (NRMSE) and cross-correlation coefficient (ρ). During experiments, eight subjects were recruited for the overground walking tests, and OMC and force plate were used as the gold standard. The results indicate that the Genetic algorithm - Gated recurrent unit estimation algorithm (GA-GRU) was the best estimation model which achieved the highest accuracy in generalized ankle moment estimation (NRMSE = 7.23%, ρ = 0.85) compared with the other models. The designed novel distributed plantar pressure system and the proposed method could serve as a joint moment estimation approach in wearable robot control and human motion state monitoring.</description><subject>Adult</subject><subject>Algorithms</subject><subject>Ankle</subject><subject>Ankle - physiology</subject><subject>Ankle Joint - physiology</subject><subject>Biomechanical Phenomena - physiology</subject><subject>Estimation</subject><subject>Female</subject><subject>Foot</subject><subject>Foot - physiology</subject><subject>Gait - physiology</subject><subject>Gait Analysis - instrumentation</subject><subject>Gait Analysis - methods</subject><subject>gated recurrent unit (GRU)</subject><subject>genetic algorithm (GA)</subject><subject>Genetic algorithms</subject><subject>Humans</subject><subject>Joint moment estimation</subject><subject>Logic gates</subject><subject>Male</subject><subject>Neural networks</subject><subject>Neural Networks, Computer</subject><subject>plantar pressure</subject><subject>Pressure</subject><subject>Sensors</subject><subject>Signal Processing, Computer-Assisted</subject><subject>smart insoles</subject><subject>Young Adult</subject><issn>2168-2194</issn><issn>2168-2208</issn><issn>2168-2208</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNpNkMtOAkEQRTtGIwT5ABNjeukG7Cd0LQFRMKgk4Hoyw9SY0Xlgd48Jf28TwFibqtzcuqk6hFxz1uecwf3zeDbvCyZUXyqlDDdnpC34wPSEYOb8NHNQLdJ17pOFMkGCwSVpSeCaGQZtsh5VXwXSl7rEytOp83kZ-7yu6Dh2mNIwjOhr_YMFfcidt3nS-CAvi7jysaVLi841FukKK5dXH3S1cx7LK3KRxYXD7rF3yPvjdD2Z9RZvT_PJaNHbCKZ8D7UESE2SADKdwgYwU0pIDcxolbDExCAUKg2aM40Q3uRZEnMhOcBQAsoOuTvkbm393aDzUZm7DRbhOqwbF0kG0oA2igcrP1g3tnbOYhZtbXjV7iLOoj3PaM8z2vOMjjzDzu0xvklKTP82TvSC4eZgyBHxX-BAGj7U8hcYF3e5</recordid><startdate>202411</startdate><enddate>202411</enddate><creator>Du, Mingyu</creator><creator>Lv, Bowen</creator><creator>Fan, Bingfei</creator><creator>Li, Xiaoling</creator><creator>Yu, Junze</creator><creator>Yi, Fugang</creator><creator>Liu, Tao</creator><creator>Cai, Shibo</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0009-0001-0037-1085</orcidid><orcidid>https://orcid.org/0000-0003-0174-3300</orcidid><orcidid>https://orcid.org/0000-0002-2797-0264</orcidid><orcidid>https://orcid.org/0009-0000-1185-3218</orcidid><orcidid>https://orcid.org/0000-0002-9531-3549</orcidid></search><sort><creationdate>202411</creationdate><title>Ankle Moment Estimation Based on A Novel Distributed Plantar Pressure Sensing System</title><author>Du, Mingyu ; Lv, Bowen ; Fan, Bingfei ; Li, Xiaoling ; Yu, Junze ; Yi, Fugang ; Liu, Tao ; Cai, Shibo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c204t-e5399d8bb9e05d9c9ef4423590854b0b8a924e4595105e93441fba123199739e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adult</topic><topic>Algorithms</topic><topic>Ankle</topic><topic>Ankle - physiology</topic><topic>Ankle Joint - physiology</topic><topic>Biomechanical Phenomena - physiology</topic><topic>Estimation</topic><topic>Female</topic><topic>Foot</topic><topic>Foot - physiology</topic><topic>Gait - physiology</topic><topic>Gait Analysis - instrumentation</topic><topic>Gait Analysis - methods</topic><topic>gated recurrent unit (GRU)</topic><topic>genetic algorithm (GA)</topic><topic>Genetic algorithms</topic><topic>Humans</topic><topic>Joint moment estimation</topic><topic>Logic gates</topic><topic>Male</topic><topic>Neural networks</topic><topic>Neural Networks, Computer</topic><topic>plantar pressure</topic><topic>Pressure</topic><topic>Sensors</topic><topic>Signal Processing, Computer-Assisted</topic><topic>smart insoles</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Du, Mingyu</creatorcontrib><creatorcontrib>Lv, Bowen</creatorcontrib><creatorcontrib>Fan, Bingfei</creatorcontrib><creatorcontrib>Li, Xiaoling</creatorcontrib><creatorcontrib>Yu, Junze</creatorcontrib><creatorcontrib>Yi, Fugang</creatorcontrib><creatorcontrib>Liu, Tao</creatorcontrib><creatorcontrib>Cai, Shibo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE journal of biomedical and health informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Du, Mingyu</au><au>Lv, Bowen</au><au>Fan, Bingfei</au><au>Li, Xiaoling</au><au>Yu, Junze</au><au>Yi, Fugang</au><au>Liu, Tao</au><au>Cai, Shibo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ankle Moment Estimation Based on A Novel Distributed Plantar Pressure Sensing System</atitle><jtitle>IEEE journal of biomedical and health informatics</jtitle><stitle>JBHI</stitle><addtitle>IEEE J Biomed Health Inform</addtitle><date>2024-11</date><risdate>2024</risdate><volume>28</volume><issue>11</issue><spage>6548</spage><epage>6556</epage><pages>6548-6556</pages><issn>2168-2194</issn><issn>2168-2208</issn><eissn>2168-2208</eissn><coden>IJBHA9</coden><abstract>Ankle moment plays an important role in human gait analysis, patients' rehabilitation process monitoring, and the human-machine interaction control of exoskeleton robots. However, current ankle moment estimation methods mainly rely on inverse dynamics (ID) based on optical motion capture system (OMC) and force plate. These methods rely on fixed instruments in the laboratory, which are difficult to be applied to the control of exoskeleton robots. To solve this problem, this paper developed a new distributed plantar pressure system and proposed an ankle plantar flexion moment estimation method using the plantar pressure system. We integrated eight pressure sensors in each insole to collect the pressure data of the key area of the foot and then used the plantar pressure data to train four neural networks to obtain the ankle moment. The performance of the models was evaluated using normalized root mean square error (NRMSE) and cross-correlation coefficient (ρ). During experiments, eight subjects were recruited for the overground walking tests, and OMC and force plate were used as the gold standard. The results indicate that the Genetic algorithm - Gated recurrent unit estimation algorithm (GA-GRU) was the best estimation model which achieved the highest accuracy in generalized ankle moment estimation (NRMSE = 7.23%, ρ = 0.85) compared with the other models. The designed novel distributed plantar pressure system and the proposed method could serve as a joint moment estimation approach in wearable robot control and human motion state monitoring.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>39150809</pmid><doi>10.1109/JBHI.2024.3444818</doi><tpages>9</tpages><orcidid>https://orcid.org/0009-0001-0037-1085</orcidid><orcidid>https://orcid.org/0000-0003-0174-3300</orcidid><orcidid>https://orcid.org/0000-0002-2797-0264</orcidid><orcidid>https://orcid.org/0009-0000-1185-3218</orcidid><orcidid>https://orcid.org/0000-0002-9531-3549</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2168-2194
ispartof IEEE journal of biomedical and health informatics, 2024-11, Vol.28 (11), p.6548-6556
issn 2168-2194
2168-2208
2168-2208
language eng
recordid cdi_crossref_primary_10_1109_JBHI_2024_3444818
source IEEE Electronic Library (IEL)
subjects Adult
Algorithms
Ankle
Ankle - physiology
Ankle Joint - physiology
Biomechanical Phenomena - physiology
Estimation
Female
Foot
Foot - physiology
Gait - physiology
Gait Analysis - instrumentation
Gait Analysis - methods
gated recurrent unit (GRU)
genetic algorithm (GA)
Genetic algorithms
Humans
Joint moment estimation
Logic gates
Male
Neural networks
Neural Networks, Computer
plantar pressure
Pressure
Sensors
Signal Processing, Computer-Assisted
smart insoles
Young Adult
title Ankle Moment Estimation Based on A Novel Distributed Plantar Pressure Sensing System
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T03%3A49%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ankle%20Moment%20Estimation%20Based%20on%20A%20Novel%20Distributed%20Plantar%20Pressure%20Sensing%20System&rft.jtitle=IEEE%20journal%20of%20biomedical%20and%20health%20informatics&rft.au=Du,%20Mingyu&rft.date=2024-11&rft.volume=28&rft.issue=11&rft.spage=6548&rft.epage=6556&rft.pages=6548-6556&rft.issn=2168-2194&rft.eissn=2168-2208&rft.coden=IJBHA9&rft_id=info:doi/10.1109/JBHI.2024.3444818&rft_dat=%3Cproquest_RIE%3E3093895841%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3093895841&rft_id=info:pmid/39150809&rft_ieee_id=10638175&rfr_iscdi=true