Employing Deep Reinforcement Learning to Maximize Lower Limb Blood Flow Using Intermittent Pneumatic Compression

Intermittent pneumatic compression (IPC) systems apply external pressure to the lower limbs and enhance peripheral blood flow. We previously introduced a cardiac-gated compression system that enhanced arterial blood velocity (BV) in the lower limb compared to fixed compression timing (CT) for seated...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of biomedical and health informatics 2024-10, Vol.28 (10), p.6193-6200
Hauptverfasser: Santelices, Iara B., Landry, Cederick, Arami, Arash, Peterson, Sean D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6200
container_issue 10
container_start_page 6193
container_title IEEE journal of biomedical and health informatics
container_volume 28
creator Santelices, Iara B.
Landry, Cederick
Arami, Arash
Peterson, Sean D.
description Intermittent pneumatic compression (IPC) systems apply external pressure to the lower limbs and enhance peripheral blood flow. We previously introduced a cardiac-gated compression system that enhanced arterial blood velocity (BV) in the lower limb compared to fixed compression timing (CT) for seated and standing subjects. However, these pilot studies found that the CT that maximized BV was not constant across individuals and could change over time. Current CT modelling methods for IPC are limited to predictions for a single day and one heartbeat ahead. However, IPC therapy for may span weeks or longer, the BV response to compression can vary with physiological state, and the best CT for eliciting the desired physiological outcome may change, even for the same individual. We propose that a deep reinforcement learning (DRL) algorithm can learn and adaptively modify CT to achieve a selected outcome using IPC. Herein, we target maximizing lower limb arterial BV as the desired outcome and build participant-specific simulated lower limb environments for 6 participants. We show that DRL can adaptively learn the CT for IPC that maximized arterial BV. Compared to previous work, the DRL agent achieves 98% \pm 2 of the resultant blood flow and is faster at maximizing BV; the DRL agent can learn an "optimal" policy in 15 minutes \pm 2 on average and can adapt on the fly. Given a desired objective, we posit that the proposed DRL agent can be implemented in IPC systems to rapidly learn the (potentially time-varying) "optimal" CT with a human-in-the-loop.
doi_str_mv 10.1109/JBHI.2024.3423698
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JBHI_2024_3423698</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10587076</ieee_id><sourcerecordid>3076287231</sourcerecordid><originalsourceid>FETCH-LOGICAL-c204t-a8f46967d61d6be38ce1e62c29c89899f606c38f9881ab308f250626e61c63d13</originalsourceid><addsrcrecordid>eNpNkF1LwzAUhoMoTuZ-gCCSS28689FlyaWbm5tUFHHXpUtPJdI0NemY89fbsk3MzQnJ874HHoSuKBlSStTd02SxHDLC4iGPGRdKnqALRoWMGCPy9HinKu6hQQifpD2yfVLiHPV4OySh4gLVM1uXbmeqD_wAUOM3MFXhvAYLVYMTyHzV_TUOP2ffxpofwInbgseJsWs8KZ3L8bx0W7wKHbesGvDWNE2Xfq1gY7PGaDx1tvYQgnHVJTorsjLA4DD7aDWfvU8XUfLyuJzeJ5FmJG6iTBaxUGKcC5qLNXCpgYJgmiktlVSqEERoLgslJc3WnMiCjYhgAgTVgueU99Htvrf27msDoUmtCRrKMqvAbULKyVgwOWa8Q-ke1d6F4KFIa29s5ncpJWnnOu1cp53r9OC6zdwc6jdrC_lf4mi2Ba73gAGAf4UjOW4381-F8IM6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3076287231</pqid></control><display><type>article</type><title>Employing Deep Reinforcement Learning to Maximize Lower Limb Blood Flow Using Intermittent Pneumatic Compression</title><source>IEEE Electronic Library (IEL)</source><creator>Santelices, Iara B. ; Landry, Cederick ; Arami, Arash ; Peterson, Sean D.</creator><creatorcontrib>Santelices, Iara B. ; Landry, Cederick ; Arami, Arash ; Peterson, Sean D.</creatorcontrib><description><![CDATA[Intermittent pneumatic compression (IPC) systems apply external pressure to the lower limbs and enhance peripheral blood flow. We previously introduced a cardiac-gated compression system that enhanced arterial blood velocity (BV) in the lower limb compared to fixed compression timing (CT) for seated and standing subjects. However, these pilot studies found that the CT that maximized BV was not constant across individuals and could change over time. Current CT modelling methods for IPC are limited to predictions for a single day and one heartbeat ahead. However, IPC therapy for may span weeks or longer, the BV response to compression can vary with physiological state, and the best CT for eliciting the desired physiological outcome may change, even for the same individual. We propose that a deep reinforcement learning (DRL) algorithm can learn and adaptively modify CT to achieve a selected outcome using IPC. Herein, we target maximizing lower limb arterial BV as the desired outcome and build participant-specific simulated lower limb environments for 6 participants. We show that DRL can adaptively learn the CT for IPC that maximized arterial BV. Compared to previous work, the DRL agent achieves 98% <inline-formula><tex-math notation="LaTeX">\pm</tex-math></inline-formula> 2 of the resultant blood flow and is faster at maximizing BV; the DRL agent can learn an "optimal" policy in 15 minutes <inline-formula><tex-math notation="LaTeX">\pm</tex-math></inline-formula> 2 on average and can adapt on the fly. Given a desired objective, we posit that the proposed DRL agent can be implemented in IPC systems to rapidly learn the (potentially time-varying) "optimal" CT with a human-in-the-loop.]]></description><identifier>ISSN: 2168-2194</identifier><identifier>ISSN: 2168-2208</identifier><identifier>EISSN: 2168-2208</identifier><identifier>DOI: 10.1109/JBHI.2024.3423698</identifier><identifier>PMID: 38968016</identifier><identifier>CODEN: IJBHA9</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Adult ; Algorithms ; Blood ; Blood flow ; Blood Flow Velocity - physiology ; cardiac gating ; Deep Learning ; deep reinforcement learning ; Electrocardiography ; Estimation ; Female ; Heart beat ; Humans ; Intermittent pneumatic compression ; Intermittent Pneumatic Compression Devices ; Lower Extremity - blood supply ; Lower Extremity - physiology ; Male ; Physiology ; Predictive models ; Young Adult</subject><ispartof>IEEE journal of biomedical and health informatics, 2024-10, Vol.28 (10), p.6193-6200</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c204t-a8f46967d61d6be38ce1e62c29c89899f606c38f9881ab308f250626e61c63d13</cites><orcidid>0000-0001-5941-4572 ; 0000-0001-8746-2491 ; 0000-0001-7609-6553 ; 0009-0004-9843-8349</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10587076$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10587076$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38968016$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Santelices, Iara B.</creatorcontrib><creatorcontrib>Landry, Cederick</creatorcontrib><creatorcontrib>Arami, Arash</creatorcontrib><creatorcontrib>Peterson, Sean D.</creatorcontrib><title>Employing Deep Reinforcement Learning to Maximize Lower Limb Blood Flow Using Intermittent Pneumatic Compression</title><title>IEEE journal of biomedical and health informatics</title><addtitle>JBHI</addtitle><addtitle>IEEE J Biomed Health Inform</addtitle><description><![CDATA[Intermittent pneumatic compression (IPC) systems apply external pressure to the lower limbs and enhance peripheral blood flow. We previously introduced a cardiac-gated compression system that enhanced arterial blood velocity (BV) in the lower limb compared to fixed compression timing (CT) for seated and standing subjects. However, these pilot studies found that the CT that maximized BV was not constant across individuals and could change over time. Current CT modelling methods for IPC are limited to predictions for a single day and one heartbeat ahead. However, IPC therapy for may span weeks or longer, the BV response to compression can vary with physiological state, and the best CT for eliciting the desired physiological outcome may change, even for the same individual. We propose that a deep reinforcement learning (DRL) algorithm can learn and adaptively modify CT to achieve a selected outcome using IPC. Herein, we target maximizing lower limb arterial BV as the desired outcome and build participant-specific simulated lower limb environments for 6 participants. We show that DRL can adaptively learn the CT for IPC that maximized arterial BV. Compared to previous work, the DRL agent achieves 98% <inline-formula><tex-math notation="LaTeX">\pm</tex-math></inline-formula> 2 of the resultant blood flow and is faster at maximizing BV; the DRL agent can learn an "optimal" policy in 15 minutes <inline-formula><tex-math notation="LaTeX">\pm</tex-math></inline-formula> 2 on average and can adapt on the fly. Given a desired objective, we posit that the proposed DRL agent can be implemented in IPC systems to rapidly learn the (potentially time-varying) "optimal" CT with a human-in-the-loop.]]></description><subject>Adult</subject><subject>Algorithms</subject><subject>Blood</subject><subject>Blood flow</subject><subject>Blood Flow Velocity - physiology</subject><subject>cardiac gating</subject><subject>Deep Learning</subject><subject>deep reinforcement learning</subject><subject>Electrocardiography</subject><subject>Estimation</subject><subject>Female</subject><subject>Heart beat</subject><subject>Humans</subject><subject>Intermittent pneumatic compression</subject><subject>Intermittent Pneumatic Compression Devices</subject><subject>Lower Extremity - blood supply</subject><subject>Lower Extremity - physiology</subject><subject>Male</subject><subject>Physiology</subject><subject>Predictive models</subject><subject>Young Adult</subject><issn>2168-2194</issn><issn>2168-2208</issn><issn>2168-2208</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNpNkF1LwzAUhoMoTuZ-gCCSS28689FlyaWbm5tUFHHXpUtPJdI0NemY89fbsk3MzQnJ874HHoSuKBlSStTd02SxHDLC4iGPGRdKnqALRoWMGCPy9HinKu6hQQifpD2yfVLiHPV4OySh4gLVM1uXbmeqD_wAUOM3MFXhvAYLVYMTyHzV_TUOP2ffxpofwInbgseJsWs8KZ3L8bx0W7wKHbesGvDWNE2Xfq1gY7PGaDx1tvYQgnHVJTorsjLA4DD7aDWfvU8XUfLyuJzeJ5FmJG6iTBaxUGKcC5qLNXCpgYJgmiktlVSqEERoLgslJc3WnMiCjYhgAgTVgueU99Htvrf27msDoUmtCRrKMqvAbULKyVgwOWa8Q-ke1d6F4KFIa29s5ncpJWnnOu1cp53r9OC6zdwc6jdrC_lf4mi2Ba73gAGAf4UjOW4381-F8IM6</recordid><startdate>202410</startdate><enddate>202410</enddate><creator>Santelices, Iara B.</creator><creator>Landry, Cederick</creator><creator>Arami, Arash</creator><creator>Peterson, Sean D.</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5941-4572</orcidid><orcidid>https://orcid.org/0000-0001-8746-2491</orcidid><orcidid>https://orcid.org/0000-0001-7609-6553</orcidid><orcidid>https://orcid.org/0009-0004-9843-8349</orcidid></search><sort><creationdate>202410</creationdate><title>Employing Deep Reinforcement Learning to Maximize Lower Limb Blood Flow Using Intermittent Pneumatic Compression</title><author>Santelices, Iara B. ; Landry, Cederick ; Arami, Arash ; Peterson, Sean D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c204t-a8f46967d61d6be38ce1e62c29c89899f606c38f9881ab308f250626e61c63d13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adult</topic><topic>Algorithms</topic><topic>Blood</topic><topic>Blood flow</topic><topic>Blood Flow Velocity - physiology</topic><topic>cardiac gating</topic><topic>Deep Learning</topic><topic>deep reinforcement learning</topic><topic>Electrocardiography</topic><topic>Estimation</topic><topic>Female</topic><topic>Heart beat</topic><topic>Humans</topic><topic>Intermittent pneumatic compression</topic><topic>Intermittent Pneumatic Compression Devices</topic><topic>Lower Extremity - blood supply</topic><topic>Lower Extremity - physiology</topic><topic>Male</topic><topic>Physiology</topic><topic>Predictive models</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Santelices, Iara B.</creatorcontrib><creatorcontrib>Landry, Cederick</creatorcontrib><creatorcontrib>Arami, Arash</creatorcontrib><creatorcontrib>Peterson, Sean D.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE journal of biomedical and health informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Santelices, Iara B.</au><au>Landry, Cederick</au><au>Arami, Arash</au><au>Peterson, Sean D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Employing Deep Reinforcement Learning to Maximize Lower Limb Blood Flow Using Intermittent Pneumatic Compression</atitle><jtitle>IEEE journal of biomedical and health informatics</jtitle><stitle>JBHI</stitle><addtitle>IEEE J Biomed Health Inform</addtitle><date>2024-10</date><risdate>2024</risdate><volume>28</volume><issue>10</issue><spage>6193</spage><epage>6200</epage><pages>6193-6200</pages><issn>2168-2194</issn><issn>2168-2208</issn><eissn>2168-2208</eissn><coden>IJBHA9</coden><abstract><![CDATA[Intermittent pneumatic compression (IPC) systems apply external pressure to the lower limbs and enhance peripheral blood flow. We previously introduced a cardiac-gated compression system that enhanced arterial blood velocity (BV) in the lower limb compared to fixed compression timing (CT) for seated and standing subjects. However, these pilot studies found that the CT that maximized BV was not constant across individuals and could change over time. Current CT modelling methods for IPC are limited to predictions for a single day and one heartbeat ahead. However, IPC therapy for may span weeks or longer, the BV response to compression can vary with physiological state, and the best CT for eliciting the desired physiological outcome may change, even for the same individual. We propose that a deep reinforcement learning (DRL) algorithm can learn and adaptively modify CT to achieve a selected outcome using IPC. Herein, we target maximizing lower limb arterial BV as the desired outcome and build participant-specific simulated lower limb environments for 6 participants. We show that DRL can adaptively learn the CT for IPC that maximized arterial BV. Compared to previous work, the DRL agent achieves 98% <inline-formula><tex-math notation="LaTeX">\pm</tex-math></inline-formula> 2 of the resultant blood flow and is faster at maximizing BV; the DRL agent can learn an "optimal" policy in 15 minutes <inline-formula><tex-math notation="LaTeX">\pm</tex-math></inline-formula> 2 on average and can adapt on the fly. Given a desired objective, we posit that the proposed DRL agent can be implemented in IPC systems to rapidly learn the (potentially time-varying) "optimal" CT with a human-in-the-loop.]]></abstract><cop>United States</cop><pub>IEEE</pub><pmid>38968016</pmid><doi>10.1109/JBHI.2024.3423698</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-5941-4572</orcidid><orcidid>https://orcid.org/0000-0001-8746-2491</orcidid><orcidid>https://orcid.org/0000-0001-7609-6553</orcidid><orcidid>https://orcid.org/0009-0004-9843-8349</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2168-2194
ispartof IEEE journal of biomedical and health informatics, 2024-10, Vol.28 (10), p.6193-6200
issn 2168-2194
2168-2208
2168-2208
language eng
recordid cdi_crossref_primary_10_1109_JBHI_2024_3423698
source IEEE Electronic Library (IEL)
subjects Adult
Algorithms
Blood
Blood flow
Blood Flow Velocity - physiology
cardiac gating
Deep Learning
deep reinforcement learning
Electrocardiography
Estimation
Female
Heart beat
Humans
Intermittent pneumatic compression
Intermittent Pneumatic Compression Devices
Lower Extremity - blood supply
Lower Extremity - physiology
Male
Physiology
Predictive models
Young Adult
title Employing Deep Reinforcement Learning to Maximize Lower Limb Blood Flow Using Intermittent Pneumatic Compression
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T21%3A17%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Employing%20Deep%20Reinforcement%20Learning%20to%20Maximize%20Lower%20Limb%20Blood%20Flow%20Using%20Intermittent%20Pneumatic%20Compression&rft.jtitle=IEEE%20journal%20of%20biomedical%20and%20health%20informatics&rft.au=Santelices,%20Iara%20B.&rft.date=2024-10&rft.volume=28&rft.issue=10&rft.spage=6193&rft.epage=6200&rft.pages=6193-6200&rft.issn=2168-2194&rft.eissn=2168-2208&rft.coden=IJBHA9&rft_id=info:doi/10.1109/JBHI.2024.3423698&rft_dat=%3Cproquest_RIE%3E3076287231%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3076287231&rft_id=info:pmid/38968016&rft_ieee_id=10587076&rfr_iscdi=true