On the Automation of Radiomics-Based Identification and Characterization of NSCLC

Proper detection and accurate characterization of Non-Small Cell Lung Cancer (NSCLC) are an open challenge in the imaging field. Biomedical imaging is fundamental in lung cancer assessment and offers the possibility of calculating predictive biomarkers impacting patients' management. Within thi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of biomedical and health informatics 2022-06, Vol.26 (6), p.2670-2679
Hauptverfasser: D'Arnese, Eleonora, Donato, Guido Walter Di, Sozzo, Emanuele Del, Sollini, Martina, Sciuto, Donatella, Santambrogio, Marco Domenico
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2679
container_issue 6
container_start_page 2670
container_title IEEE journal of biomedical and health informatics
container_volume 26
creator D'Arnese, Eleonora
Donato, Guido Walter Di
Sozzo, Emanuele Del
Sollini, Martina
Sciuto, Donatella
Santambrogio, Marco Domenico
description Proper detection and accurate characterization of Non-Small Cell Lung Cancer (NSCLC) are an open challenge in the imaging field. Biomedical imaging is fundamental in lung cancer assessment and offers the possibility of calculating predictive biomarkers impacting patients' management. Within this context, radiomics, which consists of extracting quantitative features from digital images, shows encouraging results for clinical applications, but the sub-optimal standardization of the procedure and the lack of definitive results are still a concern in the field. For these reasons, this work proposes the design and development of LuCIFEx, a fully-automated pipeline for non-invasive in-vivo characterization of NSCLC, aiming to speed up the analysis process and enable an early diagnosis of the tumor.LuCIFEx pipeline relies on routinely acquired [18F]FDG-PET/CT images for the automatic segmentation of the cancer lesion, allowing the computation of accurate radiomic features, then employed for cancer characterization through Machine Learning algorithms. The proposed multi-stage segmentation process can identify the lesion with a mean accuracy of 94.2\pm 5.0\%. Finally, the proposed data analysis pipeline demonstrates the potential of PET/CT features for the automatic recognition of lung metastases and NSCLC histological subtypes, while highlighting the main current limitations of the radiomic approach.
doi_str_mv 10.1109/JBHI.2022.3156984
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JBHI_2022_3156984</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9729636</ieee_id><sourcerecordid>2637319835</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-4af7c50428e5e23b8193282bbc6f5ddd78544f3a1e51322ce728f4a9f52986413</originalsourceid><addsrcrecordid>eNpdkF1LwzAUhoMobqg_QAQpeONNZ3KStMnlVtRNhuLXdcnSE8xY29m0F_rr7djHhbk5IXnel8NDyCWjI8aovnuaTGcjoAAjzmSilTgiQ2CJigGoOt7fmRYDchHCkvZH9U86OSUDLkFKStmQvL5UUfuF0bhr69K0vq6i2kVvpvB16W2IJyZgEc0KrFrvvN0Spiqi7Ms0xrbY-N9D7Pk9m2fn5MSZVcCL3Twjnw_3H9k0nr88zrLxPLZc6DYWxqVWUgEKJQJfKKY5KFgsbOJkURSpkkI4bhhKxgEspqCcMNpJ0CoRjJ-R223vuqm_OwxtXvpgcbUyFdZdyCHhKWdacdmjN__QZd01Vb9dT_W9VKZ6Q7EtZZs6hAZdvm58aZqfnNF8ozzfKM83yvOd8j5zvWvuFiUWh8RecA9cbQGPiIdvnYJOeML_ALCMgj8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2672805795</pqid></control><display><type>article</type><title>On the Automation of Radiomics-Based Identification and Characterization of NSCLC</title><source>IEEE Xplore</source><creator>D'Arnese, Eleonora ; Donato, Guido Walter Di ; Sozzo, Emanuele Del ; Sollini, Martina ; Sciuto, Donatella ; Santambrogio, Marco Domenico</creator><creatorcontrib>D'Arnese, Eleonora ; Donato, Guido Walter Di ; Sozzo, Emanuele Del ; Sollini, Martina ; Sciuto, Donatella ; Santambrogio, Marco Domenico</creatorcontrib><description>Proper detection and accurate characterization of Non-Small Cell Lung Cancer (NSCLC) are an open challenge in the imaging field. Biomedical imaging is fundamental in lung cancer assessment and offers the possibility of calculating predictive biomarkers impacting patients' management. Within this context, radiomics, which consists of extracting quantitative features from digital images, shows encouraging results for clinical applications, but the sub-optimal standardization of the procedure and the lack of definitive results are still a concern in the field. For these reasons, this work proposes the design and development of LuCIFEx, a fully-automated pipeline for non-invasive in-vivo characterization of NSCLC, aiming to speed up the analysis process and enable an early diagnosis of the tumor.LuCIFEx pipeline relies on routinely acquired [18F]FDG-PET/CT images for the automatic segmentation of the cancer lesion, allowing the computation of accurate radiomic features, then employed for cancer characterization through Machine Learning algorithms. The proposed multi-stage segmentation process can identify the lesion with a mean accuracy of &lt;inline-formula&gt;&lt;tex-math notation="LaTeX"&gt;94.2\pm 5.0\%&lt;/tex-math&gt;&lt;/inline-formula&gt;. Finally, the proposed data analysis pipeline demonstrates the potential of PET/CT features for the automatic recognition of lung metastases and NSCLC histological subtypes, while highlighting the main current limitations of the radiomic approach.</description><identifier>ISSN: 2168-2194</identifier><identifier>EISSN: 2168-2208</identifier><identifier>DOI: 10.1109/JBHI.2022.3156984</identifier><identifier>PMID: 35255001</identifier><identifier>CODEN: IJBHA9</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithms ; Automatic segmentation ; Automation ; Biomarkers ; Cancer ; Computed tomography ; Data analysis ; Digital imaging ; Feature extraction ; Image acquisition ; Image processing ; Image segmentation ; Impact prediction ; Lesions ; Lung ; Lung cancer ; Machine learning ; Medical imaging ; Metastases ; Non-small cell lung carcinoma ; PET/CT ; Pipelines ; Positron emission ; Radiomics ; Small cell lung carcinoma ; Standardization ; Tomography ; Tumors</subject><ispartof>IEEE journal of biomedical and health informatics, 2022-06, Vol.26 (6), p.2670-2679</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-4af7c50428e5e23b8193282bbc6f5ddd78544f3a1e51322ce728f4a9f52986413</citedby><cites>FETCH-LOGICAL-c349t-4af7c50428e5e23b8193282bbc6f5ddd78544f3a1e51322ce728f4a9f52986413</cites><orcidid>0000-0003-2214-6492 ; 0000-0003-3101-8118 ; 0000-0002-6967-5079 ; 0000-0002-9883-9693 ; 0000-0001-9030-6940 ; 0000-0003-2026-9755</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9729636$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,27926,27927,54760</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9729636$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35255001$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>D'Arnese, Eleonora</creatorcontrib><creatorcontrib>Donato, Guido Walter Di</creatorcontrib><creatorcontrib>Sozzo, Emanuele Del</creatorcontrib><creatorcontrib>Sollini, Martina</creatorcontrib><creatorcontrib>Sciuto, Donatella</creatorcontrib><creatorcontrib>Santambrogio, Marco Domenico</creatorcontrib><title>On the Automation of Radiomics-Based Identification and Characterization of NSCLC</title><title>IEEE journal of biomedical and health informatics</title><addtitle>JBHI</addtitle><addtitle>IEEE J Biomed Health Inform</addtitle><description>Proper detection and accurate characterization of Non-Small Cell Lung Cancer (NSCLC) are an open challenge in the imaging field. Biomedical imaging is fundamental in lung cancer assessment and offers the possibility of calculating predictive biomarkers impacting patients' management. Within this context, radiomics, which consists of extracting quantitative features from digital images, shows encouraging results for clinical applications, but the sub-optimal standardization of the procedure and the lack of definitive results are still a concern in the field. For these reasons, this work proposes the design and development of LuCIFEx, a fully-automated pipeline for non-invasive in-vivo characterization of NSCLC, aiming to speed up the analysis process and enable an early diagnosis of the tumor.LuCIFEx pipeline relies on routinely acquired [18F]FDG-PET/CT images for the automatic segmentation of the cancer lesion, allowing the computation of accurate radiomic features, then employed for cancer characterization through Machine Learning algorithms. The proposed multi-stage segmentation process can identify the lesion with a mean accuracy of &lt;inline-formula&gt;&lt;tex-math notation="LaTeX"&gt;94.2\pm 5.0\%&lt;/tex-math&gt;&lt;/inline-formula&gt;. Finally, the proposed data analysis pipeline demonstrates the potential of PET/CT features for the automatic recognition of lung metastases and NSCLC histological subtypes, while highlighting the main current limitations of the radiomic approach.</description><subject>Algorithms</subject><subject>Automatic segmentation</subject><subject>Automation</subject><subject>Biomarkers</subject><subject>Cancer</subject><subject>Computed tomography</subject><subject>Data analysis</subject><subject>Digital imaging</subject><subject>Feature extraction</subject><subject>Image acquisition</subject><subject>Image processing</subject><subject>Image segmentation</subject><subject>Impact prediction</subject><subject>Lesions</subject><subject>Lung</subject><subject>Lung cancer</subject><subject>Machine learning</subject><subject>Medical imaging</subject><subject>Metastases</subject><subject>Non-small cell lung carcinoma</subject><subject>PET/CT</subject><subject>Pipelines</subject><subject>Positron emission</subject><subject>Radiomics</subject><subject>Small cell lung carcinoma</subject><subject>Standardization</subject><subject>Tomography</subject><subject>Tumors</subject><issn>2168-2194</issn><issn>2168-2208</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkF1LwzAUhoMobqg_QAQpeONNZ3KStMnlVtRNhuLXdcnSE8xY29m0F_rr7djHhbk5IXnel8NDyCWjI8aovnuaTGcjoAAjzmSilTgiQ2CJigGoOt7fmRYDchHCkvZH9U86OSUDLkFKStmQvL5UUfuF0bhr69K0vq6i2kVvpvB16W2IJyZgEc0KrFrvvN0Spiqi7Ms0xrbY-N9D7Pk9m2fn5MSZVcCL3Twjnw_3H9k0nr88zrLxPLZc6DYWxqVWUgEKJQJfKKY5KFgsbOJkURSpkkI4bhhKxgEspqCcMNpJ0CoRjJ-R223vuqm_OwxtXvpgcbUyFdZdyCHhKWdacdmjN__QZd01Vb9dT_W9VKZ6Q7EtZZs6hAZdvm58aZqfnNF8ozzfKM83yvOd8j5zvWvuFiUWh8RecA9cbQGPiIdvnYJOeML_ALCMgj8</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>D'Arnese, Eleonora</creator><creator>Donato, Guido Walter Di</creator><creator>Sozzo, Emanuele Del</creator><creator>Sollini, Martina</creator><creator>Sciuto, Donatella</creator><creator>Santambrogio, Marco Domenico</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2214-6492</orcidid><orcidid>https://orcid.org/0000-0003-3101-8118</orcidid><orcidid>https://orcid.org/0000-0002-6967-5079</orcidid><orcidid>https://orcid.org/0000-0002-9883-9693</orcidid><orcidid>https://orcid.org/0000-0001-9030-6940</orcidid><orcidid>https://orcid.org/0000-0003-2026-9755</orcidid></search><sort><creationdate>20220601</creationdate><title>On the Automation of Radiomics-Based Identification and Characterization of NSCLC</title><author>D'Arnese, Eleonora ; Donato, Guido Walter Di ; Sozzo, Emanuele Del ; Sollini, Martina ; Sciuto, Donatella ; Santambrogio, Marco Domenico</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-4af7c50428e5e23b8193282bbc6f5ddd78544f3a1e51322ce728f4a9f52986413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Automatic segmentation</topic><topic>Automation</topic><topic>Biomarkers</topic><topic>Cancer</topic><topic>Computed tomography</topic><topic>Data analysis</topic><topic>Digital imaging</topic><topic>Feature extraction</topic><topic>Image acquisition</topic><topic>Image processing</topic><topic>Image segmentation</topic><topic>Impact prediction</topic><topic>Lesions</topic><topic>Lung</topic><topic>Lung cancer</topic><topic>Machine learning</topic><topic>Medical imaging</topic><topic>Metastases</topic><topic>Non-small cell lung carcinoma</topic><topic>PET/CT</topic><topic>Pipelines</topic><topic>Positron emission</topic><topic>Radiomics</topic><topic>Small cell lung carcinoma</topic><topic>Standardization</topic><topic>Tomography</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>D'Arnese, Eleonora</creatorcontrib><creatorcontrib>Donato, Guido Walter Di</creatorcontrib><creatorcontrib>Sozzo, Emanuele Del</creatorcontrib><creatorcontrib>Sollini, Martina</creatorcontrib><creatorcontrib>Sciuto, Donatella</creatorcontrib><creatorcontrib>Santambrogio, Marco Domenico</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) Online</collection><collection>IEEE Xplore</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE journal of biomedical and health informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>D'Arnese, Eleonora</au><au>Donato, Guido Walter Di</au><au>Sozzo, Emanuele Del</au><au>Sollini, Martina</au><au>Sciuto, Donatella</au><au>Santambrogio, Marco Domenico</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Automation of Radiomics-Based Identification and Characterization of NSCLC</atitle><jtitle>IEEE journal of biomedical and health informatics</jtitle><stitle>JBHI</stitle><addtitle>IEEE J Biomed Health Inform</addtitle><date>2022-06-01</date><risdate>2022</risdate><volume>26</volume><issue>6</issue><spage>2670</spage><epage>2679</epage><pages>2670-2679</pages><issn>2168-2194</issn><eissn>2168-2208</eissn><coden>IJBHA9</coden><abstract>Proper detection and accurate characterization of Non-Small Cell Lung Cancer (NSCLC) are an open challenge in the imaging field. Biomedical imaging is fundamental in lung cancer assessment and offers the possibility of calculating predictive biomarkers impacting patients' management. Within this context, radiomics, which consists of extracting quantitative features from digital images, shows encouraging results for clinical applications, but the sub-optimal standardization of the procedure and the lack of definitive results are still a concern in the field. For these reasons, this work proposes the design and development of LuCIFEx, a fully-automated pipeline for non-invasive in-vivo characterization of NSCLC, aiming to speed up the analysis process and enable an early diagnosis of the tumor.LuCIFEx pipeline relies on routinely acquired [18F]FDG-PET/CT images for the automatic segmentation of the cancer lesion, allowing the computation of accurate radiomic features, then employed for cancer characterization through Machine Learning algorithms. The proposed multi-stage segmentation process can identify the lesion with a mean accuracy of &lt;inline-formula&gt;&lt;tex-math notation="LaTeX"&gt;94.2\pm 5.0\%&lt;/tex-math&gt;&lt;/inline-formula&gt;. Finally, the proposed data analysis pipeline demonstrates the potential of PET/CT features for the automatic recognition of lung metastases and NSCLC histological subtypes, while highlighting the main current limitations of the radiomic approach.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>35255001</pmid><doi>10.1109/JBHI.2022.3156984</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-2214-6492</orcidid><orcidid>https://orcid.org/0000-0003-3101-8118</orcidid><orcidid>https://orcid.org/0000-0002-6967-5079</orcidid><orcidid>https://orcid.org/0000-0002-9883-9693</orcidid><orcidid>https://orcid.org/0000-0001-9030-6940</orcidid><orcidid>https://orcid.org/0000-0003-2026-9755</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2168-2194
ispartof IEEE journal of biomedical and health informatics, 2022-06, Vol.26 (6), p.2670-2679
issn 2168-2194
2168-2208
language eng
recordid cdi_crossref_primary_10_1109_JBHI_2022_3156984
source IEEE Xplore
subjects Algorithms
Automatic segmentation
Automation
Biomarkers
Cancer
Computed tomography
Data analysis
Digital imaging
Feature extraction
Image acquisition
Image processing
Image segmentation
Impact prediction
Lesions
Lung
Lung cancer
Machine learning
Medical imaging
Metastases
Non-small cell lung carcinoma
PET/CT
Pipelines
Positron emission
Radiomics
Small cell lung carcinoma
Standardization
Tomography
Tumors
title On the Automation of Radiomics-Based Identification and Characterization of NSCLC
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T20%3A40%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Automation%20of%20Radiomics-Based%20Identification%20and%20Characterization%20of%20NSCLC&rft.jtitle=IEEE%20journal%20of%20biomedical%20and%20health%20informatics&rft.au=D'Arnese,%20Eleonora&rft.date=2022-06-01&rft.volume=26&rft.issue=6&rft.spage=2670&rft.epage=2679&rft.pages=2670-2679&rft.issn=2168-2194&rft.eissn=2168-2208&rft.coden=IJBHA9&rft_id=info:doi/10.1109/JBHI.2022.3156984&rft_dat=%3Cproquest_RIE%3E2637319835%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2672805795&rft_id=info:pmid/35255001&rft_ieee_id=9729636&rfr_iscdi=true