Automatic Scale Severity Assessment Method in Psoriasis Skin Images Using Local Descriptors

Psoriasis is a chronic skin condition. Its clinical assessment involves four measures: erythema, scales, induration, and area. In this paper, we introduce a scale severity scoring framework for two-dimensional psoriasis skin images. Specifically, we leverage the bag-of-visual words (BoVWs) model for...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of biomedical and health informatics 2020-02, Vol.24 (2), p.577-585
Hauptverfasser: George, Yasmeen, Aldeen, Mohammad, Garnavi, Rahil
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 585
container_issue 2
container_start_page 577
container_title IEEE journal of biomedical and health informatics
container_volume 24
creator George, Yasmeen
Aldeen, Mohammad
Garnavi, Rahil
description Psoriasis is a chronic skin condition. Its clinical assessment involves four measures: erythema, scales, induration, and area. In this paper, we introduce a scale severity scoring framework for two-dimensional psoriasis skin images. Specifically, we leverage the bag-of-visual words (BoVWs) model for lesion feature extraction using superpixels as key points. BoVWs model is based on building a vocabulary with specific number of words (i.e., codebook size) by using a clustering algorithm with some local features extracted from a constructed set of key points. This is followed by three-class machine learning classifiers for scale scoring using support vector machine (SVM) and random forest. Besides, we examine eight different local color and texture descriptors, namely color histogram, local binary patterns, edge histogram descriptor, color layout descriptor, scalable color descriptor, color and edge directivity descriptor (CEDD), fuzzy color and texture histogram, and brightness and texture directionality histogram. Further, the selection of codebook and superpixel sizes are studied intensively. A psoriasis image set, consisting of 96 images, is used in this study. The conducted experiments show that color descriptors have the highest performance measures for scale severity scoring. This is followed by the combined color and texture descriptors, whereas texturebased descriptors come last. Moreover, K-means algorithm shows better results in vocabulary building than Gaussian mixed model, in terms of accuracy and computations time. Finally, the proposed method yields a scale severity scoring accuracy of 80.81% using the following setup: a superpixel of size 15 × 15 × 3, a combined color and texture descriptor (i.e., CEDD), a constructed codebook of size 128 using K-means, and SVM for scale scoring.
doi_str_mv 10.1109/JBHI.2019.2910883
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JBHI_2019_2910883</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8691431</ieee_id><sourcerecordid>2210269648</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-68e423d51fea3316ad12a1b3cc6452f247335bb95291c631560138a961258eac3</originalsourceid><addsrcrecordid>eNpdkE1vGyEQhlHVqonS_ICqUoWUSy92GWApHB03H45ctZKbUw8I43FK6l0cZjdS_n2w7ORQLgPDM6_gYewjiDGAcF9vzq9nYynAjaUDYa16w44lGDuSUti3L3tw-oidEt2LumxtOfOeHSnhnNANHLM_k6HPbehT5IsYNsgX-Igl9U98QoRELXY9_4H937ziqeO_KJcUKBFf_KvHWRvukPgtpe6Oz3MN4N-RYknbPhf6wN6tw4bw9FBP2O3lxe_p9Wj-82o2ncxHUWnXj4xFLdWqgTUGpcCEFcgASxWj0Y1cS_1NqWa5dE39ZzQKGiNA2eAMyMZiiOqEfdnnbkt-GJB63yaKuNmEDvNAXkoQ0jijbUXP_kPv81C6-jovVSPBOqehUrCnYslEBdd-W1IbypMH4Xfy_U6-38n3B_l15vMheVi2uHqdeFFdgU97ICHi67U1DrQC9QxlrIYr</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2352189941</pqid></control><display><type>article</type><title>Automatic Scale Severity Assessment Method in Psoriasis Skin Images Using Local Descriptors</title><source>IEEE Electronic Library (IEL)</source><creator>George, Yasmeen ; Aldeen, Mohammad ; Garnavi, Rahil</creator><creatorcontrib>George, Yasmeen ; Aldeen, Mohammad ; Garnavi, Rahil</creatorcontrib><description>Psoriasis is a chronic skin condition. Its clinical assessment involves four measures: erythema, scales, induration, and area. In this paper, we introduce a scale severity scoring framework for two-dimensional psoriasis skin images. Specifically, we leverage the bag-of-visual words (BoVWs) model for lesion feature extraction using superpixels as key points. BoVWs model is based on building a vocabulary with specific number of words (i.e., codebook size) by using a clustering algorithm with some local features extracted from a constructed set of key points. This is followed by three-class machine learning classifiers for scale scoring using support vector machine (SVM) and random forest. Besides, we examine eight different local color and texture descriptors, namely color histogram, local binary patterns, edge histogram descriptor, color layout descriptor, scalable color descriptor, color and edge directivity descriptor (CEDD), fuzzy color and texture histogram, and brightness and texture directionality histogram. Further, the selection of codebook and superpixel sizes are studied intensively. A psoriasis image set, consisting of 96 images, is used in this study. The conducted experiments show that color descriptors have the highest performance measures for scale severity scoring. This is followed by the combined color and texture descriptors, whereas texturebased descriptors come last. Moreover, K-means algorithm shows better results in vocabulary building than Gaussian mixed model, in terms of accuracy and computations time. Finally, the proposed method yields a scale severity scoring accuracy of 80.81% using the following setup: a superpixel of size 15 × 15 × 3, a combined color and texture descriptor (i.e., CEDD), a constructed codebook of size 128 using K-means, and SVM for scale scoring.</description><identifier>ISSN: 2168-2194</identifier><identifier>EISSN: 2168-2208</identifier><identifier>DOI: 10.1109/JBHI.2019.2910883</identifier><identifier>PMID: 30990451</identifier><identifier>CODEN: IJBHA9</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithms ; Australia ; bag of visual words ; Balances (scales) ; Cluster Analysis ; Clustering ; Color ; Directivity ; Erythema ; Feature extraction ; Histograms ; Humans ; Image color analysis ; Image edge detection ; Learning algorithms ; Lesions ; local feature extraction ; Machine Learning ; machine learning classification ; Model accuracy ; PASI assessment ; Psoriasis ; Psoriasis - physiopathology ; Psoriasis image analysis ; scale severity scoring ; Severity of Illness Index ; Skin ; Skin - pathology ; Support vector machines ; Texture ; Two dimensional models</subject><ispartof>IEEE journal of biomedical and health informatics, 2020-02, Vol.24 (2), p.577-585</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-68e423d51fea3316ad12a1b3cc6452f247335bb95291c631560138a961258eac3</citedby><cites>FETCH-LOGICAL-c349t-68e423d51fea3316ad12a1b3cc6452f247335bb95291c631560138a961258eac3</cites><orcidid>0000-0002-0977-0656</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8691431$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8691431$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30990451$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>George, Yasmeen</creatorcontrib><creatorcontrib>Aldeen, Mohammad</creatorcontrib><creatorcontrib>Garnavi, Rahil</creatorcontrib><title>Automatic Scale Severity Assessment Method in Psoriasis Skin Images Using Local Descriptors</title><title>IEEE journal of biomedical and health informatics</title><addtitle>JBHI</addtitle><addtitle>IEEE J Biomed Health Inform</addtitle><description>Psoriasis is a chronic skin condition. Its clinical assessment involves four measures: erythema, scales, induration, and area. In this paper, we introduce a scale severity scoring framework for two-dimensional psoriasis skin images. Specifically, we leverage the bag-of-visual words (BoVWs) model for lesion feature extraction using superpixels as key points. BoVWs model is based on building a vocabulary with specific number of words (i.e., codebook size) by using a clustering algorithm with some local features extracted from a constructed set of key points. This is followed by three-class machine learning classifiers for scale scoring using support vector machine (SVM) and random forest. Besides, we examine eight different local color and texture descriptors, namely color histogram, local binary patterns, edge histogram descriptor, color layout descriptor, scalable color descriptor, color and edge directivity descriptor (CEDD), fuzzy color and texture histogram, and brightness and texture directionality histogram. Further, the selection of codebook and superpixel sizes are studied intensively. A psoriasis image set, consisting of 96 images, is used in this study. The conducted experiments show that color descriptors have the highest performance measures for scale severity scoring. This is followed by the combined color and texture descriptors, whereas texturebased descriptors come last. Moreover, K-means algorithm shows better results in vocabulary building than Gaussian mixed model, in terms of accuracy and computations time. Finally, the proposed method yields a scale severity scoring accuracy of 80.81% using the following setup: a superpixel of size 15 × 15 × 3, a combined color and texture descriptor (i.e., CEDD), a constructed codebook of size 128 using K-means, and SVM for scale scoring.</description><subject>Algorithms</subject><subject>Australia</subject><subject>bag of visual words</subject><subject>Balances (scales)</subject><subject>Cluster Analysis</subject><subject>Clustering</subject><subject>Color</subject><subject>Directivity</subject><subject>Erythema</subject><subject>Feature extraction</subject><subject>Histograms</subject><subject>Humans</subject><subject>Image color analysis</subject><subject>Image edge detection</subject><subject>Learning algorithms</subject><subject>Lesions</subject><subject>local feature extraction</subject><subject>Machine Learning</subject><subject>machine learning classification</subject><subject>Model accuracy</subject><subject>PASI assessment</subject><subject>Psoriasis</subject><subject>Psoriasis - physiopathology</subject><subject>Psoriasis image analysis</subject><subject>scale severity scoring</subject><subject>Severity of Illness Index</subject><subject>Skin</subject><subject>Skin - pathology</subject><subject>Support vector machines</subject><subject>Texture</subject><subject>Two dimensional models</subject><issn>2168-2194</issn><issn>2168-2208</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNpdkE1vGyEQhlHVqonS_ICqUoWUSy92GWApHB03H45ctZKbUw8I43FK6l0cZjdS_n2w7ORQLgPDM6_gYewjiDGAcF9vzq9nYynAjaUDYa16w44lGDuSUti3L3tw-oidEt2LumxtOfOeHSnhnNANHLM_k6HPbehT5IsYNsgX-Igl9U98QoRELXY9_4H937ziqeO_KJcUKBFf_KvHWRvukPgtpe6Oz3MN4N-RYknbPhf6wN6tw4bw9FBP2O3lxe_p9Wj-82o2ncxHUWnXj4xFLdWqgTUGpcCEFcgASxWj0Y1cS_1NqWa5dE39ZzQKGiNA2eAMyMZiiOqEfdnnbkt-GJB63yaKuNmEDvNAXkoQ0jijbUXP_kPv81C6-jovVSPBOqehUrCnYslEBdd-W1IbypMH4Xfy_U6-38n3B_l15vMheVi2uHqdeFFdgU97ICHi67U1DrQC9QxlrIYr</recordid><startdate>20200201</startdate><enddate>20200201</enddate><creator>George, Yasmeen</creator><creator>Aldeen, Mohammad</creator><creator>Garnavi, Rahil</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0977-0656</orcidid></search><sort><creationdate>20200201</creationdate><title>Automatic Scale Severity Assessment Method in Psoriasis Skin Images Using Local Descriptors</title><author>George, Yasmeen ; Aldeen, Mohammad ; Garnavi, Rahil</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-68e423d51fea3316ad12a1b3cc6452f247335bb95291c631560138a961258eac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Australia</topic><topic>bag of visual words</topic><topic>Balances (scales)</topic><topic>Cluster Analysis</topic><topic>Clustering</topic><topic>Color</topic><topic>Directivity</topic><topic>Erythema</topic><topic>Feature extraction</topic><topic>Histograms</topic><topic>Humans</topic><topic>Image color analysis</topic><topic>Image edge detection</topic><topic>Learning algorithms</topic><topic>Lesions</topic><topic>local feature extraction</topic><topic>Machine Learning</topic><topic>machine learning classification</topic><topic>Model accuracy</topic><topic>PASI assessment</topic><topic>Psoriasis</topic><topic>Psoriasis - physiopathology</topic><topic>Psoriasis image analysis</topic><topic>scale severity scoring</topic><topic>Severity of Illness Index</topic><topic>Skin</topic><topic>Skin - pathology</topic><topic>Support vector machines</topic><topic>Texture</topic><topic>Two dimensional models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>George, Yasmeen</creatorcontrib><creatorcontrib>Aldeen, Mohammad</creatorcontrib><creatorcontrib>Garnavi, Rahil</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE journal of biomedical and health informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>George, Yasmeen</au><au>Aldeen, Mohammad</au><au>Garnavi, Rahil</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automatic Scale Severity Assessment Method in Psoriasis Skin Images Using Local Descriptors</atitle><jtitle>IEEE journal of biomedical and health informatics</jtitle><stitle>JBHI</stitle><addtitle>IEEE J Biomed Health Inform</addtitle><date>2020-02-01</date><risdate>2020</risdate><volume>24</volume><issue>2</issue><spage>577</spage><epage>585</epage><pages>577-585</pages><issn>2168-2194</issn><eissn>2168-2208</eissn><coden>IJBHA9</coden><abstract>Psoriasis is a chronic skin condition. Its clinical assessment involves four measures: erythema, scales, induration, and area. In this paper, we introduce a scale severity scoring framework for two-dimensional psoriasis skin images. Specifically, we leverage the bag-of-visual words (BoVWs) model for lesion feature extraction using superpixels as key points. BoVWs model is based on building a vocabulary with specific number of words (i.e., codebook size) by using a clustering algorithm with some local features extracted from a constructed set of key points. This is followed by three-class machine learning classifiers for scale scoring using support vector machine (SVM) and random forest. Besides, we examine eight different local color and texture descriptors, namely color histogram, local binary patterns, edge histogram descriptor, color layout descriptor, scalable color descriptor, color and edge directivity descriptor (CEDD), fuzzy color and texture histogram, and brightness and texture directionality histogram. Further, the selection of codebook and superpixel sizes are studied intensively. A psoriasis image set, consisting of 96 images, is used in this study. The conducted experiments show that color descriptors have the highest performance measures for scale severity scoring. This is followed by the combined color and texture descriptors, whereas texturebased descriptors come last. Moreover, K-means algorithm shows better results in vocabulary building than Gaussian mixed model, in terms of accuracy and computations time. Finally, the proposed method yields a scale severity scoring accuracy of 80.81% using the following setup: a superpixel of size 15 × 15 × 3, a combined color and texture descriptor (i.e., CEDD), a constructed codebook of size 128 using K-means, and SVM for scale scoring.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>30990451</pmid><doi>10.1109/JBHI.2019.2910883</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-0977-0656</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2168-2194
ispartof IEEE journal of biomedical and health informatics, 2020-02, Vol.24 (2), p.577-585
issn 2168-2194
2168-2208
language eng
recordid cdi_crossref_primary_10_1109_JBHI_2019_2910883
source IEEE Electronic Library (IEL)
subjects Algorithms
Australia
bag of visual words
Balances (scales)
Cluster Analysis
Clustering
Color
Directivity
Erythema
Feature extraction
Histograms
Humans
Image color analysis
Image edge detection
Learning algorithms
Lesions
local feature extraction
Machine Learning
machine learning classification
Model accuracy
PASI assessment
Psoriasis
Psoriasis - physiopathology
Psoriasis image analysis
scale severity scoring
Severity of Illness Index
Skin
Skin - pathology
Support vector machines
Texture
Two dimensional models
title Automatic Scale Severity Assessment Method in Psoriasis Skin Images Using Local Descriptors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T22%3A28%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automatic%20Scale%20Severity%20Assessment%20Method%20in%20Psoriasis%20Skin%20Images%20Using%20Local%20Descriptors&rft.jtitle=IEEE%20journal%20of%20biomedical%20and%20health%20informatics&rft.au=George,%20Yasmeen&rft.date=2020-02-01&rft.volume=24&rft.issue=2&rft.spage=577&rft.epage=585&rft.pages=577-585&rft.issn=2168-2194&rft.eissn=2168-2208&rft.coden=IJBHA9&rft_id=info:doi/10.1109/JBHI.2019.2910883&rft_dat=%3Cproquest_RIE%3E2210269648%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2352189941&rft_id=info:pmid/30990451&rft_ieee_id=8691431&rfr_iscdi=true