Multiscale Rotation-Invariant Convolutional Neural Networks for Lung Texture Classification
We propose a new multiscale rotation-invariant convolutional neural network (MRCNN) model for classifying various lung tissue types on high-resolution computed tomography. MRCNN employs Gabor-local binary pattern that introduces a good property in image analysis-invariance to image scales and rotati...
Gespeichert in:
Veröffentlicht in: | IEEE journal of biomedical and health informatics 2018-01, Vol.22 (1), p.184-195 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 195 |
---|---|
container_issue | 1 |
container_start_page | 184 |
container_title | IEEE journal of biomedical and health informatics |
container_volume | 22 |
creator | Wang, Qiangchang Zheng, Yuanjie Yang, Gongping Jin, Weidong Chen, Xinjian Yin, Yilong |
description | We propose a new multiscale rotation-invariant convolutional neural network (MRCNN) model for classifying various lung tissue types on high-resolution computed tomography. MRCNN employs Gabor-local binary pattern that introduces a good property in image analysis-invariance to image scales and rotations. In addition, we offer an approach to deal with the problems caused by imbalanced number of samples between different classes in most of the existing works, accomplished by changing the overlapping size between the adjacent patches. Experimental results on a public interstitial lung disease database show a superior performance of the proposed method to state of the art. |
doi_str_mv | 10.1109/JBHI.2017.2685586 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JBHI_2017_2685586</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7883849</ieee_id><sourcerecordid>1984533457</sourcerecordid><originalsourceid>FETCH-LOGICAL-c415t-18309db5577404a09a04e03fc75298b3277484bd21159050fe97898d34e05c863</originalsourceid><addsrcrecordid>eNpdkE9Lw0AQxRdRbKn9ACJIwIuX1P2bzB61qK1UBaknD2GbbiQ1zdbdbNVv76atPTiXGd785sE8hE4JHhCC5dXDzWg8oJikA5qAEJAcoC4lCcSUYjj8m4nkHdR3boFDQZBkcow6FBhjCZdd9Pboq6Z0uap09GIa1ZSmjsf1WtlS1U00NPXaVL5VVRU9aW83rfky9sNFhbHRxNfv0VR_N97qaFgp58qizDc-J-ioUJXT_V3vode72-lwFE-e78fD60mccyKamADDcj4TIk055gpLhbnGrMhTQSXMGA068NmcEiIkFrjQMgUJcxYokUPCeuhy67uy5tNr12TL8JGuKlVr411GAAhNGBUtevEPXRhvw2-BksAFY1ykgSJbKrfGOauLbGXLpbI_GcFZG37Whp-14We78MPN-c7Zz5Z6vr_4izoAZ1ug1Frv1ykAg7D9BV-OhtM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1984533457</pqid></control><display><type>article</type><title>Multiscale Rotation-Invariant Convolutional Neural Networks for Lung Texture Classification</title><source>IEEE Electronic Library (IEL)</source><creator>Wang, Qiangchang ; Zheng, Yuanjie ; Yang, Gongping ; Jin, Weidong ; Chen, Xinjian ; Yin, Yilong</creator><creatorcontrib>Wang, Qiangchang ; Zheng, Yuanjie ; Yang, Gongping ; Jin, Weidong ; Chen, Xinjian ; Yin, Yilong</creatorcontrib><description>We propose a new multiscale rotation-invariant convolutional neural network (MRCNN) model for classifying various lung tissue types on high-resolution computed tomography. MRCNN employs Gabor-local binary pattern that introduces a good property in image analysis-invariance to image scales and rotations. In addition, we offer an approach to deal with the problems caused by imbalanced number of samples between different classes in most of the existing works, accomplished by changing the overlapping size between the adjacent patches. Experimental results on a public interstitial lung disease database show a superior performance of the proposed method to state of the art.</description><identifier>ISSN: 2168-2194</identifier><identifier>EISSN: 2168-2208</identifier><identifier>DOI: 10.1109/JBHI.2017.2685586</identifier><identifier>PMID: 28333649</identifier><identifier>CODEN: IJBHA9</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Artificial neural networks ; Biomedical imaging ; Computed tomography ; Convolutional neural network (CNN) ; Feature extraction ; gabor filter ; Image analysis ; Image processing ; Informatics ; interstitial lung disease (ILD) classification ; Invariants ; local binary pattern (LBP) ; lung classification ; Lung diseases ; Lungs ; Neural networks ; Support vector machines</subject><ispartof>IEEE journal of biomedical and health informatics, 2018-01, Vol.22 (1), p.184-195</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c415t-18309db5577404a09a04e03fc75298b3277484bd21159050fe97898d34e05c863</citedby><cites>FETCH-LOGICAL-c415t-18309db5577404a09a04e03fc75298b3277484bd21159050fe97898d34e05c863</cites><orcidid>0000-0003-0416-8778 ; 0000-0002-5186-6504</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7883849$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7883849$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28333649$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Qiangchang</creatorcontrib><creatorcontrib>Zheng, Yuanjie</creatorcontrib><creatorcontrib>Yang, Gongping</creatorcontrib><creatorcontrib>Jin, Weidong</creatorcontrib><creatorcontrib>Chen, Xinjian</creatorcontrib><creatorcontrib>Yin, Yilong</creatorcontrib><title>Multiscale Rotation-Invariant Convolutional Neural Networks for Lung Texture Classification</title><title>IEEE journal of biomedical and health informatics</title><addtitle>JBHI</addtitle><addtitle>IEEE J Biomed Health Inform</addtitle><description>We propose a new multiscale rotation-invariant convolutional neural network (MRCNN) model for classifying various lung tissue types on high-resolution computed tomography. MRCNN employs Gabor-local binary pattern that introduces a good property in image analysis-invariance to image scales and rotations. In addition, we offer an approach to deal with the problems caused by imbalanced number of samples between different classes in most of the existing works, accomplished by changing the overlapping size between the adjacent patches. Experimental results on a public interstitial lung disease database show a superior performance of the proposed method to state of the art.</description><subject>Artificial neural networks</subject><subject>Biomedical imaging</subject><subject>Computed tomography</subject><subject>Convolutional neural network (CNN)</subject><subject>Feature extraction</subject><subject>gabor filter</subject><subject>Image analysis</subject><subject>Image processing</subject><subject>Informatics</subject><subject>interstitial lung disease (ILD) classification</subject><subject>Invariants</subject><subject>local binary pattern (LBP)</subject><subject>lung classification</subject><subject>Lung diseases</subject><subject>Lungs</subject><subject>Neural networks</subject><subject>Support vector machines</subject><issn>2168-2194</issn><issn>2168-2208</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE9Lw0AQxRdRbKn9ACJIwIuX1P2bzB61qK1UBaknD2GbbiQ1zdbdbNVv76atPTiXGd785sE8hE4JHhCC5dXDzWg8oJikA5qAEJAcoC4lCcSUYjj8m4nkHdR3boFDQZBkcow6FBhjCZdd9Pboq6Z0uap09GIa1ZSmjsf1WtlS1U00NPXaVL5VVRU9aW83rfky9sNFhbHRxNfv0VR_N97qaFgp58qizDc-J-ioUJXT_V3vode72-lwFE-e78fD60mccyKamADDcj4TIk055gpLhbnGrMhTQSXMGA068NmcEiIkFrjQMgUJcxYokUPCeuhy67uy5tNr12TL8JGuKlVr411GAAhNGBUtevEPXRhvw2-BksAFY1ykgSJbKrfGOauLbGXLpbI_GcFZG37Whp-14We78MPN-c7Zz5Z6vr_4izoAZ1ug1Frv1ykAg7D9BV-OhtM</recordid><startdate>201801</startdate><enddate>201801</enddate><creator>Wang, Qiangchang</creator><creator>Zheng, Yuanjie</creator><creator>Yang, Gongping</creator><creator>Jin, Weidong</creator><creator>Chen, Xinjian</creator><creator>Yin, Yilong</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0416-8778</orcidid><orcidid>https://orcid.org/0000-0002-5186-6504</orcidid></search><sort><creationdate>201801</creationdate><title>Multiscale Rotation-Invariant Convolutional Neural Networks for Lung Texture Classification</title><author>Wang, Qiangchang ; Zheng, Yuanjie ; Yang, Gongping ; Jin, Weidong ; Chen, Xinjian ; Yin, Yilong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c415t-18309db5577404a09a04e03fc75298b3277484bd21159050fe97898d34e05c863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Artificial neural networks</topic><topic>Biomedical imaging</topic><topic>Computed tomography</topic><topic>Convolutional neural network (CNN)</topic><topic>Feature extraction</topic><topic>gabor filter</topic><topic>Image analysis</topic><topic>Image processing</topic><topic>Informatics</topic><topic>interstitial lung disease (ILD) classification</topic><topic>Invariants</topic><topic>local binary pattern (LBP)</topic><topic>lung classification</topic><topic>Lung diseases</topic><topic>Lungs</topic><topic>Neural networks</topic><topic>Support vector machines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Qiangchang</creatorcontrib><creatorcontrib>Zheng, Yuanjie</creatorcontrib><creatorcontrib>Yang, Gongping</creatorcontrib><creatorcontrib>Jin, Weidong</creatorcontrib><creatorcontrib>Chen, Xinjian</creatorcontrib><creatorcontrib>Yin, Yilong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE journal of biomedical and health informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wang, Qiangchang</au><au>Zheng, Yuanjie</au><au>Yang, Gongping</au><au>Jin, Weidong</au><au>Chen, Xinjian</au><au>Yin, Yilong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiscale Rotation-Invariant Convolutional Neural Networks for Lung Texture Classification</atitle><jtitle>IEEE journal of biomedical and health informatics</jtitle><stitle>JBHI</stitle><addtitle>IEEE J Biomed Health Inform</addtitle><date>2018-01</date><risdate>2018</risdate><volume>22</volume><issue>1</issue><spage>184</spage><epage>195</epage><pages>184-195</pages><issn>2168-2194</issn><eissn>2168-2208</eissn><coden>IJBHA9</coden><abstract>We propose a new multiscale rotation-invariant convolutional neural network (MRCNN) model for classifying various lung tissue types on high-resolution computed tomography. MRCNN employs Gabor-local binary pattern that introduces a good property in image analysis-invariance to image scales and rotations. In addition, we offer an approach to deal with the problems caused by imbalanced number of samples between different classes in most of the existing works, accomplished by changing the overlapping size between the adjacent patches. Experimental results on a public interstitial lung disease database show a superior performance of the proposed method to state of the art.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>28333649</pmid><doi>10.1109/JBHI.2017.2685586</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-0416-8778</orcidid><orcidid>https://orcid.org/0000-0002-5186-6504</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2168-2194 |
ispartof | IEEE journal of biomedical and health informatics, 2018-01, Vol.22 (1), p.184-195 |
issn | 2168-2194 2168-2208 |
language | eng |
recordid | cdi_crossref_primary_10_1109_JBHI_2017_2685586 |
source | IEEE Electronic Library (IEL) |
subjects | Artificial neural networks Biomedical imaging Computed tomography Convolutional neural network (CNN) Feature extraction gabor filter Image analysis Image processing Informatics interstitial lung disease (ILD) classification Invariants local binary pattern (LBP) lung classification Lung diseases Lungs Neural networks Support vector machines |
title | Multiscale Rotation-Invariant Convolutional Neural Networks for Lung Texture Classification |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T06%3A44%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiscale%20Rotation-Invariant%20Convolutional%20Neural%20Networks%20for%20Lung%20Texture%20Classification&rft.jtitle=IEEE%20journal%20of%20biomedical%20and%20health%20informatics&rft.au=Wang,%20Qiangchang&rft.date=2018-01&rft.volume=22&rft.issue=1&rft.spage=184&rft.epage=195&rft.pages=184-195&rft.issn=2168-2194&rft.eissn=2168-2208&rft.coden=IJBHA9&rft_id=info:doi/10.1109/JBHI.2017.2685586&rft_dat=%3Cproquest_RIE%3E1984533457%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1984533457&rft_id=info:pmid/28333649&rft_ieee_id=7883849&rfr_iscdi=true |