Multiscale Rotation-Invariant Convolutional Neural Networks for Lung Texture Classification

We propose a new multiscale rotation-invariant convolutional neural network (MRCNN) model for classifying various lung tissue types on high-resolution computed tomography. MRCNN employs Gabor-local binary pattern that introduces a good property in image analysis-invariance to image scales and rotati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of biomedical and health informatics 2018-01, Vol.22 (1), p.184-195
Hauptverfasser: Wang, Qiangchang, Zheng, Yuanjie, Yang, Gongping, Jin, Weidong, Chen, Xinjian, Yin, Yilong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 195
container_issue 1
container_start_page 184
container_title IEEE journal of biomedical and health informatics
container_volume 22
creator Wang, Qiangchang
Zheng, Yuanjie
Yang, Gongping
Jin, Weidong
Chen, Xinjian
Yin, Yilong
description We propose a new multiscale rotation-invariant convolutional neural network (MRCNN) model for classifying various lung tissue types on high-resolution computed tomography. MRCNN employs Gabor-local binary pattern that introduces a good property in image analysis-invariance to image scales and rotations. In addition, we offer an approach to deal with the problems caused by imbalanced number of samples between different classes in most of the existing works, accomplished by changing the overlapping size between the adjacent patches. Experimental results on a public interstitial lung disease database show a superior performance of the proposed method to state of the art.
doi_str_mv 10.1109/JBHI.2017.2685586
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JBHI_2017_2685586</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7883849</ieee_id><sourcerecordid>1984533457</sourcerecordid><originalsourceid>FETCH-LOGICAL-c415t-18309db5577404a09a04e03fc75298b3277484bd21159050fe97898d34e05c863</originalsourceid><addsrcrecordid>eNpdkE9Lw0AQxRdRbKn9ACJIwIuX1P2bzB61qK1UBaknD2GbbiQ1zdbdbNVv76atPTiXGd785sE8hE4JHhCC5dXDzWg8oJikA5qAEJAcoC4lCcSUYjj8m4nkHdR3boFDQZBkcow6FBhjCZdd9Pboq6Z0uap09GIa1ZSmjsf1WtlS1U00NPXaVL5VVRU9aW83rfky9sNFhbHRxNfv0VR_N97qaFgp58qizDc-J-ioUJXT_V3vode72-lwFE-e78fD60mccyKamADDcj4TIk055gpLhbnGrMhTQSXMGA068NmcEiIkFrjQMgUJcxYokUPCeuhy67uy5tNr12TL8JGuKlVr411GAAhNGBUtevEPXRhvw2-BksAFY1ykgSJbKrfGOauLbGXLpbI_GcFZG37Whp-14We78MPN-c7Zz5Z6vr_4izoAZ1ug1Frv1ykAg7D9BV-OhtM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1984533457</pqid></control><display><type>article</type><title>Multiscale Rotation-Invariant Convolutional Neural Networks for Lung Texture Classification</title><source>IEEE Electronic Library (IEL)</source><creator>Wang, Qiangchang ; Zheng, Yuanjie ; Yang, Gongping ; Jin, Weidong ; Chen, Xinjian ; Yin, Yilong</creator><creatorcontrib>Wang, Qiangchang ; Zheng, Yuanjie ; Yang, Gongping ; Jin, Weidong ; Chen, Xinjian ; Yin, Yilong</creatorcontrib><description>We propose a new multiscale rotation-invariant convolutional neural network (MRCNN) model for classifying various lung tissue types on high-resolution computed tomography. MRCNN employs Gabor-local binary pattern that introduces a good property in image analysis-invariance to image scales and rotations. In addition, we offer an approach to deal with the problems caused by imbalanced number of samples between different classes in most of the existing works, accomplished by changing the overlapping size between the adjacent patches. Experimental results on a public interstitial lung disease database show a superior performance of the proposed method to state of the art.</description><identifier>ISSN: 2168-2194</identifier><identifier>EISSN: 2168-2208</identifier><identifier>DOI: 10.1109/JBHI.2017.2685586</identifier><identifier>PMID: 28333649</identifier><identifier>CODEN: IJBHA9</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Artificial neural networks ; Biomedical imaging ; Computed tomography ; Convolutional neural network (CNN) ; Feature extraction ; gabor filter ; Image analysis ; Image processing ; Informatics ; interstitial lung disease (ILD) classification ; Invariants ; local binary pattern (LBP) ; lung classification ; Lung diseases ; Lungs ; Neural networks ; Support vector machines</subject><ispartof>IEEE journal of biomedical and health informatics, 2018-01, Vol.22 (1), p.184-195</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c415t-18309db5577404a09a04e03fc75298b3277484bd21159050fe97898d34e05c863</citedby><cites>FETCH-LOGICAL-c415t-18309db5577404a09a04e03fc75298b3277484bd21159050fe97898d34e05c863</cites><orcidid>0000-0003-0416-8778 ; 0000-0002-5186-6504</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7883849$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7883849$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28333649$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Qiangchang</creatorcontrib><creatorcontrib>Zheng, Yuanjie</creatorcontrib><creatorcontrib>Yang, Gongping</creatorcontrib><creatorcontrib>Jin, Weidong</creatorcontrib><creatorcontrib>Chen, Xinjian</creatorcontrib><creatorcontrib>Yin, Yilong</creatorcontrib><title>Multiscale Rotation-Invariant Convolutional Neural Networks for Lung Texture Classification</title><title>IEEE journal of biomedical and health informatics</title><addtitle>JBHI</addtitle><addtitle>IEEE J Biomed Health Inform</addtitle><description>We propose a new multiscale rotation-invariant convolutional neural network (MRCNN) model for classifying various lung tissue types on high-resolution computed tomography. MRCNN employs Gabor-local binary pattern that introduces a good property in image analysis-invariance to image scales and rotations. In addition, we offer an approach to deal with the problems caused by imbalanced number of samples between different classes in most of the existing works, accomplished by changing the overlapping size between the adjacent patches. Experimental results on a public interstitial lung disease database show a superior performance of the proposed method to state of the art.</description><subject>Artificial neural networks</subject><subject>Biomedical imaging</subject><subject>Computed tomography</subject><subject>Convolutional neural network (CNN)</subject><subject>Feature extraction</subject><subject>gabor filter</subject><subject>Image analysis</subject><subject>Image processing</subject><subject>Informatics</subject><subject>interstitial lung disease (ILD) classification</subject><subject>Invariants</subject><subject>local binary pattern (LBP)</subject><subject>lung classification</subject><subject>Lung diseases</subject><subject>Lungs</subject><subject>Neural networks</subject><subject>Support vector machines</subject><issn>2168-2194</issn><issn>2168-2208</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE9Lw0AQxRdRbKn9ACJIwIuX1P2bzB61qK1UBaknD2GbbiQ1zdbdbNVv76atPTiXGd785sE8hE4JHhCC5dXDzWg8oJikA5qAEJAcoC4lCcSUYjj8m4nkHdR3boFDQZBkcow6FBhjCZdd9Pboq6Z0uap09GIa1ZSmjsf1WtlS1U00NPXaVL5VVRU9aW83rfky9sNFhbHRxNfv0VR_N97qaFgp58qizDc-J-ioUJXT_V3vode72-lwFE-e78fD60mccyKamADDcj4TIk055gpLhbnGrMhTQSXMGA068NmcEiIkFrjQMgUJcxYokUPCeuhy67uy5tNr12TL8JGuKlVr411GAAhNGBUtevEPXRhvw2-BksAFY1ykgSJbKrfGOauLbGXLpbI_GcFZG37Whp-14We78MPN-c7Zz5Z6vr_4izoAZ1ug1Frv1ykAg7D9BV-OhtM</recordid><startdate>201801</startdate><enddate>201801</enddate><creator>Wang, Qiangchang</creator><creator>Zheng, Yuanjie</creator><creator>Yang, Gongping</creator><creator>Jin, Weidong</creator><creator>Chen, Xinjian</creator><creator>Yin, Yilong</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0416-8778</orcidid><orcidid>https://orcid.org/0000-0002-5186-6504</orcidid></search><sort><creationdate>201801</creationdate><title>Multiscale Rotation-Invariant Convolutional Neural Networks for Lung Texture Classification</title><author>Wang, Qiangchang ; Zheng, Yuanjie ; Yang, Gongping ; Jin, Weidong ; Chen, Xinjian ; Yin, Yilong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c415t-18309db5577404a09a04e03fc75298b3277484bd21159050fe97898d34e05c863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Artificial neural networks</topic><topic>Biomedical imaging</topic><topic>Computed tomography</topic><topic>Convolutional neural network (CNN)</topic><topic>Feature extraction</topic><topic>gabor filter</topic><topic>Image analysis</topic><topic>Image processing</topic><topic>Informatics</topic><topic>interstitial lung disease (ILD) classification</topic><topic>Invariants</topic><topic>local binary pattern (LBP)</topic><topic>lung classification</topic><topic>Lung diseases</topic><topic>Lungs</topic><topic>Neural networks</topic><topic>Support vector machines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Qiangchang</creatorcontrib><creatorcontrib>Zheng, Yuanjie</creatorcontrib><creatorcontrib>Yang, Gongping</creatorcontrib><creatorcontrib>Jin, Weidong</creatorcontrib><creatorcontrib>Chen, Xinjian</creatorcontrib><creatorcontrib>Yin, Yilong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE journal of biomedical and health informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wang, Qiangchang</au><au>Zheng, Yuanjie</au><au>Yang, Gongping</au><au>Jin, Weidong</au><au>Chen, Xinjian</au><au>Yin, Yilong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiscale Rotation-Invariant Convolutional Neural Networks for Lung Texture Classification</atitle><jtitle>IEEE journal of biomedical and health informatics</jtitle><stitle>JBHI</stitle><addtitle>IEEE J Biomed Health Inform</addtitle><date>2018-01</date><risdate>2018</risdate><volume>22</volume><issue>1</issue><spage>184</spage><epage>195</epage><pages>184-195</pages><issn>2168-2194</issn><eissn>2168-2208</eissn><coden>IJBHA9</coden><abstract>We propose a new multiscale rotation-invariant convolutional neural network (MRCNN) model for classifying various lung tissue types on high-resolution computed tomography. MRCNN employs Gabor-local binary pattern that introduces a good property in image analysis-invariance to image scales and rotations. In addition, we offer an approach to deal with the problems caused by imbalanced number of samples between different classes in most of the existing works, accomplished by changing the overlapping size between the adjacent patches. Experimental results on a public interstitial lung disease database show a superior performance of the proposed method to state of the art.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>28333649</pmid><doi>10.1109/JBHI.2017.2685586</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-0416-8778</orcidid><orcidid>https://orcid.org/0000-0002-5186-6504</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2168-2194
ispartof IEEE journal of biomedical and health informatics, 2018-01, Vol.22 (1), p.184-195
issn 2168-2194
2168-2208
language eng
recordid cdi_crossref_primary_10_1109_JBHI_2017_2685586
source IEEE Electronic Library (IEL)
subjects Artificial neural networks
Biomedical imaging
Computed tomography
Convolutional neural network (CNN)
Feature extraction
gabor filter
Image analysis
Image processing
Informatics
interstitial lung disease (ILD) classification
Invariants
local binary pattern (LBP)
lung classification
Lung diseases
Lungs
Neural networks
Support vector machines
title Multiscale Rotation-Invariant Convolutional Neural Networks for Lung Texture Classification
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T06%3A44%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiscale%20Rotation-Invariant%20Convolutional%20Neural%20Networks%20for%20Lung%20Texture%20Classification&rft.jtitle=IEEE%20journal%20of%20biomedical%20and%20health%20informatics&rft.au=Wang,%20Qiangchang&rft.date=2018-01&rft.volume=22&rft.issue=1&rft.spage=184&rft.epage=195&rft.pages=184-195&rft.issn=2168-2194&rft.eissn=2168-2208&rft.coden=IJBHA9&rft_id=info:doi/10.1109/JBHI.2017.2685586&rft_dat=%3Cproquest_RIE%3E1984533457%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1984533457&rft_id=info:pmid/28333649&rft_ieee_id=7883849&rfr_iscdi=true