Automated Detection of Atrial Fibrillation Based on Time–Frequency Analysis of Seismocardiograms

In this paper, a novel method to detect atrial fibrillation (AFib) from a seismocardiogram (SCG) is presented. The proposed method is based on linear classification of the spectral entropy and a heart rate variability index computed from the SCG. The performance of the developed algorithm is demonst...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of biomedical and health informatics 2017-09, Vol.21 (5), p.1233-1241
Hauptverfasser: Hurnanen, Tero, Lehtonen, Eero, Tadi, Mojtaba Jafari, Kuusela, Tom, Kiviniemi, Tuomas, Saraste, Antti, Vasankari, Tuija, Airaksinen, Juhani, Koivisto, Tero, Pankaala, Mikko
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1241
container_issue 5
container_start_page 1233
container_title IEEE journal of biomedical and health informatics
container_volume 21
creator Hurnanen, Tero
Lehtonen, Eero
Tadi, Mojtaba Jafari
Kuusela, Tom
Kiviniemi, Tuomas
Saraste, Antti
Vasankari, Tuija
Airaksinen, Juhani
Koivisto, Tero
Pankaala, Mikko
description In this paper, a novel method to detect atrial fibrillation (AFib) from a seismocardiogram (SCG) is presented. The proposed method is based on linear classification of the spectral entropy and a heart rate variability index computed from the SCG. The performance of the developed algorithm is demonstrated on data gathered from 13 patients in clinical setting. After motion artifact removal, in total 119 min of AFib data and 126 min of sinus rhythm data were considered for automated AFib detection. No other arrhythmias were considered in this study. The proposed algorithm requires no direct heartbeat peak detection from the SCG data, which makes it tolerant against interpersonal variations in the SCG morphology, and noise. Furthermore, the proposed method relies solely on the SCG and needs no complementary electrocardiography to be functional. For the considered data, the detection method performs well even on relatively low quality SCG signals. Using a majority voting scheme that takes five randomly selected segments from a signal and classifies these segments using the proposed algorithm, we obtained an average true positive rate of 99.9 and an average true negative rate of 96.4 for detecting AFib in leave-one-out cross-validation. This paper facilitates adoption of microelectromechanical sensor based heart monitoring devices for arrhythmia detection.
doi_str_mv 10.1109/JBHI.2016.2621887
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JBHI_2016_2621887</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7736051</ieee_id><sourcerecordid>1839122085</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-39ab03a5c37a1f26dbca7e482db484029ef476e70646afc49bd08d9eb35f5a443</originalsourceid><addsrcrecordid>eNpdkblOxDAQhi0EAgQ8AEJCkWhodvEVH-VyLIeQKIDacpwJMkrWYCfFdrwDb8iT4LALBdPMaPz9o_H8CB0SPCUE67O785vbKcVETKmgRCm5gXYpEWpCKVabvzXRfAcdpPSKc6jc0mIb7VCpGBel2EXVbOhDZ3uoi0vowfU-LIrQFLM-etsWc19F37b2p31uU8Zy8eQ7-Pr4nEd4H2DhlsVsYdtl8mlUPoJPXXA21j68RNulfbTV2DbBwTrvoef51dPFzeT-4fr2YnY_cYzrfsK0rTCzpWPSkoaKunJWAle0rrjimGpouBQgseDCNo7rqsaq1lCxsikt52wPna7mvsWQ90q96XxykLdfQBiSIYppMh6nzOjJP_Q1DDF_IhlKJOclZwRniqwoF0NKERrzFn1n49IQbEYPzOiBGT0waw-y5ng9eag6qP8UvxfPwNEK8ADw9ywlE7gk7BufBYtm</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2174454310</pqid></control><display><type>article</type><title>Automated Detection of Atrial Fibrillation Based on Time–Frequency Analysis of Seismocardiograms</title><source>IEEE Electronic Library (IEL)</source><creator>Hurnanen, Tero ; Lehtonen, Eero ; Tadi, Mojtaba Jafari ; Kuusela, Tom ; Kiviniemi, Tuomas ; Saraste, Antti ; Vasankari, Tuija ; Airaksinen, Juhani ; Koivisto, Tero ; Pankaala, Mikko</creator><creatorcontrib>Hurnanen, Tero ; Lehtonen, Eero ; Tadi, Mojtaba Jafari ; Kuusela, Tom ; Kiviniemi, Tuomas ; Saraste, Antti ; Vasankari, Tuija ; Airaksinen, Juhani ; Koivisto, Tero ; Pankaala, Mikko</creatorcontrib><description>In this paper, a novel method to detect atrial fibrillation (AFib) from a seismocardiogram (SCG) is presented. The proposed method is based on linear classification of the spectral entropy and a heart rate variability index computed from the SCG. The performance of the developed algorithm is demonstrated on data gathered from 13 patients in clinical setting. After motion artifact removal, in total 119 min of AFib data and 126 min of sinus rhythm data were considered for automated AFib detection. No other arrhythmias were considered in this study. The proposed algorithm requires no direct heartbeat peak detection from the SCG data, which makes it tolerant against interpersonal variations in the SCG morphology, and noise. Furthermore, the proposed method relies solely on the SCG and needs no complementary electrocardiography to be functional. For the considered data, the detection method performs well even on relatively low quality SCG signals. Using a majority voting scheme that takes five randomly selected segments from a signal and classifies these segments using the proposed algorithm, we obtained an average true positive rate of 99.9 and an average true negative rate of 96.4 for detecting AFib in leave-one-out cross-validation. This paper facilitates adoption of microelectromechanical sensor based heart monitoring devices for arrhythmia detection.</description><identifier>ISSN: 2168-2194</identifier><identifier>EISSN: 2168-2208</identifier><identifier>DOI: 10.1109/JBHI.2016.2621887</identifier><identifier>PMID: 27834656</identifier><identifier>CODEN: IJBHA9</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Accelerometer ; Algorithms ; Arrhythmia ; atrial fibrillation (AFib) ; Atrial Fibrillation - diagnosis ; Automation ; Cardiac arrhythmia ; EKG ; Electrocardiography ; Entropy ; Female ; Fibrillation ; Frequency analysis ; Heart rate ; Heart Rate - physiology ; Heart rate variability ; Humans ; Informatics ; Kinetocardiography - methods ; Male ; microelectromechanical sensor (MEMS) ; Monitoring ; Morphology ; Rhythm ; Segments ; seismocardiography (SCG) ; Signal classification ; Signal Processing, Computer-Assisted ; Signal quality ; Time-frequency analysis</subject><ispartof>IEEE journal of biomedical and health informatics, 2017-09, Vol.21 (5), p.1233-1241</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-39ab03a5c37a1f26dbca7e482db484029ef476e70646afc49bd08d9eb35f5a443</citedby><cites>FETCH-LOGICAL-c349t-39ab03a5c37a1f26dbca7e482db484029ef476e70646afc49bd08d9eb35f5a443</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7736051$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7736051$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27834656$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hurnanen, Tero</creatorcontrib><creatorcontrib>Lehtonen, Eero</creatorcontrib><creatorcontrib>Tadi, Mojtaba Jafari</creatorcontrib><creatorcontrib>Kuusela, Tom</creatorcontrib><creatorcontrib>Kiviniemi, Tuomas</creatorcontrib><creatorcontrib>Saraste, Antti</creatorcontrib><creatorcontrib>Vasankari, Tuija</creatorcontrib><creatorcontrib>Airaksinen, Juhani</creatorcontrib><creatorcontrib>Koivisto, Tero</creatorcontrib><creatorcontrib>Pankaala, Mikko</creatorcontrib><title>Automated Detection of Atrial Fibrillation Based on Time–Frequency Analysis of Seismocardiograms</title><title>IEEE journal of biomedical and health informatics</title><addtitle>JBHI</addtitle><addtitle>IEEE J Biomed Health Inform</addtitle><description>In this paper, a novel method to detect atrial fibrillation (AFib) from a seismocardiogram (SCG) is presented. The proposed method is based on linear classification of the spectral entropy and a heart rate variability index computed from the SCG. The performance of the developed algorithm is demonstrated on data gathered from 13 patients in clinical setting. After motion artifact removal, in total 119 min of AFib data and 126 min of sinus rhythm data were considered for automated AFib detection. No other arrhythmias were considered in this study. The proposed algorithm requires no direct heartbeat peak detection from the SCG data, which makes it tolerant against interpersonal variations in the SCG morphology, and noise. Furthermore, the proposed method relies solely on the SCG and needs no complementary electrocardiography to be functional. For the considered data, the detection method performs well even on relatively low quality SCG signals. Using a majority voting scheme that takes five randomly selected segments from a signal and classifies these segments using the proposed algorithm, we obtained an average true positive rate of 99.9 and an average true negative rate of 96.4 for detecting AFib in leave-one-out cross-validation. This paper facilitates adoption of microelectromechanical sensor based heart monitoring devices for arrhythmia detection.</description><subject>Accelerometer</subject><subject>Algorithms</subject><subject>Arrhythmia</subject><subject>atrial fibrillation (AFib)</subject><subject>Atrial Fibrillation - diagnosis</subject><subject>Automation</subject><subject>Cardiac arrhythmia</subject><subject>EKG</subject><subject>Electrocardiography</subject><subject>Entropy</subject><subject>Female</subject><subject>Fibrillation</subject><subject>Frequency analysis</subject><subject>Heart rate</subject><subject>Heart Rate - physiology</subject><subject>Heart rate variability</subject><subject>Humans</subject><subject>Informatics</subject><subject>Kinetocardiography - methods</subject><subject>Male</subject><subject>microelectromechanical sensor (MEMS)</subject><subject>Monitoring</subject><subject>Morphology</subject><subject>Rhythm</subject><subject>Segments</subject><subject>seismocardiography (SCG)</subject><subject>Signal classification</subject><subject>Signal Processing, Computer-Assisted</subject><subject>Signal quality</subject><subject>Time-frequency analysis</subject><issn>2168-2194</issn><issn>2168-2208</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNpdkblOxDAQhi0EAgQ8AEJCkWhodvEVH-VyLIeQKIDacpwJMkrWYCfFdrwDb8iT4LALBdPMaPz9o_H8CB0SPCUE67O785vbKcVETKmgRCm5gXYpEWpCKVabvzXRfAcdpPSKc6jc0mIb7VCpGBel2EXVbOhDZ3uoi0vowfU-LIrQFLM-etsWc19F37b2p31uU8Zy8eQ7-Pr4nEd4H2DhlsVsYdtl8mlUPoJPXXA21j68RNulfbTV2DbBwTrvoef51dPFzeT-4fr2YnY_cYzrfsK0rTCzpWPSkoaKunJWAle0rrjimGpouBQgseDCNo7rqsaq1lCxsikt52wPna7mvsWQ90q96XxykLdfQBiSIYppMh6nzOjJP_Q1DDF_IhlKJOclZwRniqwoF0NKERrzFn1n49IQbEYPzOiBGT0waw-y5ng9eag6qP8UvxfPwNEK8ADw9ywlE7gk7BufBYtm</recordid><startdate>201709</startdate><enddate>201709</enddate><creator>Hurnanen, Tero</creator><creator>Lehtonen, Eero</creator><creator>Tadi, Mojtaba Jafari</creator><creator>Kuusela, Tom</creator><creator>Kiviniemi, Tuomas</creator><creator>Saraste, Antti</creator><creator>Vasankari, Tuija</creator><creator>Airaksinen, Juhani</creator><creator>Koivisto, Tero</creator><creator>Pankaala, Mikko</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>201709</creationdate><title>Automated Detection of Atrial Fibrillation Based on Time–Frequency Analysis of Seismocardiograms</title><author>Hurnanen, Tero ; Lehtonen, Eero ; Tadi, Mojtaba Jafari ; Kuusela, Tom ; Kiviniemi, Tuomas ; Saraste, Antti ; Vasankari, Tuija ; Airaksinen, Juhani ; Koivisto, Tero ; Pankaala, Mikko</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-39ab03a5c37a1f26dbca7e482db484029ef476e70646afc49bd08d9eb35f5a443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Accelerometer</topic><topic>Algorithms</topic><topic>Arrhythmia</topic><topic>atrial fibrillation (AFib)</topic><topic>Atrial Fibrillation - diagnosis</topic><topic>Automation</topic><topic>Cardiac arrhythmia</topic><topic>EKG</topic><topic>Electrocardiography</topic><topic>Entropy</topic><topic>Female</topic><topic>Fibrillation</topic><topic>Frequency analysis</topic><topic>Heart rate</topic><topic>Heart Rate - physiology</topic><topic>Heart rate variability</topic><topic>Humans</topic><topic>Informatics</topic><topic>Kinetocardiography - methods</topic><topic>Male</topic><topic>microelectromechanical sensor (MEMS)</topic><topic>Monitoring</topic><topic>Morphology</topic><topic>Rhythm</topic><topic>Segments</topic><topic>seismocardiography (SCG)</topic><topic>Signal classification</topic><topic>Signal Processing, Computer-Assisted</topic><topic>Signal quality</topic><topic>Time-frequency analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hurnanen, Tero</creatorcontrib><creatorcontrib>Lehtonen, Eero</creatorcontrib><creatorcontrib>Tadi, Mojtaba Jafari</creatorcontrib><creatorcontrib>Kuusela, Tom</creatorcontrib><creatorcontrib>Kiviniemi, Tuomas</creatorcontrib><creatorcontrib>Saraste, Antti</creatorcontrib><creatorcontrib>Vasankari, Tuija</creatorcontrib><creatorcontrib>Airaksinen, Juhani</creatorcontrib><creatorcontrib>Koivisto, Tero</creatorcontrib><creatorcontrib>Pankaala, Mikko</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE journal of biomedical and health informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hurnanen, Tero</au><au>Lehtonen, Eero</au><au>Tadi, Mojtaba Jafari</au><au>Kuusela, Tom</au><au>Kiviniemi, Tuomas</au><au>Saraste, Antti</au><au>Vasankari, Tuija</au><au>Airaksinen, Juhani</au><au>Koivisto, Tero</au><au>Pankaala, Mikko</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automated Detection of Atrial Fibrillation Based on Time–Frequency Analysis of Seismocardiograms</atitle><jtitle>IEEE journal of biomedical and health informatics</jtitle><stitle>JBHI</stitle><addtitle>IEEE J Biomed Health Inform</addtitle><date>2017-09</date><risdate>2017</risdate><volume>21</volume><issue>5</issue><spage>1233</spage><epage>1241</epage><pages>1233-1241</pages><issn>2168-2194</issn><eissn>2168-2208</eissn><coden>IJBHA9</coden><abstract>In this paper, a novel method to detect atrial fibrillation (AFib) from a seismocardiogram (SCG) is presented. The proposed method is based on linear classification of the spectral entropy and a heart rate variability index computed from the SCG. The performance of the developed algorithm is demonstrated on data gathered from 13 patients in clinical setting. After motion artifact removal, in total 119 min of AFib data and 126 min of sinus rhythm data were considered for automated AFib detection. No other arrhythmias were considered in this study. The proposed algorithm requires no direct heartbeat peak detection from the SCG data, which makes it tolerant against interpersonal variations in the SCG morphology, and noise. Furthermore, the proposed method relies solely on the SCG and needs no complementary electrocardiography to be functional. For the considered data, the detection method performs well even on relatively low quality SCG signals. Using a majority voting scheme that takes five randomly selected segments from a signal and classifies these segments using the proposed algorithm, we obtained an average true positive rate of 99.9 and an average true negative rate of 96.4 for detecting AFib in leave-one-out cross-validation. This paper facilitates adoption of microelectromechanical sensor based heart monitoring devices for arrhythmia detection.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>27834656</pmid><doi>10.1109/JBHI.2016.2621887</doi><tpages>9</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2168-2194
ispartof IEEE journal of biomedical and health informatics, 2017-09, Vol.21 (5), p.1233-1241
issn 2168-2194
2168-2208
language eng
recordid cdi_crossref_primary_10_1109_JBHI_2016_2621887
source IEEE Electronic Library (IEL)
subjects Accelerometer
Algorithms
Arrhythmia
atrial fibrillation (AFib)
Atrial Fibrillation - diagnosis
Automation
Cardiac arrhythmia
EKG
Electrocardiography
Entropy
Female
Fibrillation
Frequency analysis
Heart rate
Heart Rate - physiology
Heart rate variability
Humans
Informatics
Kinetocardiography - methods
Male
microelectromechanical sensor (MEMS)
Monitoring
Morphology
Rhythm
Segments
seismocardiography (SCG)
Signal classification
Signal Processing, Computer-Assisted
Signal quality
Time-frequency analysis
title Automated Detection of Atrial Fibrillation Based on Time–Frequency Analysis of Seismocardiograms
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T19%3A16%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automated%20Detection%20of%20Atrial%20Fibrillation%20Based%20on%20Time%E2%80%93Frequency%20Analysis%20of%20Seismocardiograms&rft.jtitle=IEEE%20journal%20of%20biomedical%20and%20health%20informatics&rft.au=Hurnanen,%20Tero&rft.date=2017-09&rft.volume=21&rft.issue=5&rft.spage=1233&rft.epage=1241&rft.pages=1233-1241&rft.issn=2168-2194&rft.eissn=2168-2208&rft.coden=IJBHA9&rft_id=info:doi/10.1109/JBHI.2016.2621887&rft_dat=%3Cproquest_RIE%3E1839122085%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2174454310&rft_id=info:pmid/27834656&rft_ieee_id=7736051&rfr_iscdi=true