A Novel Method for Automated Diagnosis of Epilepsy Using Complex-Valued Classifiers

The study reported herein proposes a new method for the diagnosis of epilepsy from electroencephalography (EEG) signals based on complex classifiers. To carry out this study, first the features of EEG data are extracted using a dual-tree complex wavelet transformation at different levels of granular...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of biomedical and health informatics 2016-01, Vol.20 (1), p.108-118
Hauptverfasser: Peker, Musa, Sen, Baha, Delen, Dursun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 118
container_issue 1
container_start_page 108
container_title IEEE journal of biomedical and health informatics
container_volume 20
creator Peker, Musa
Sen, Baha
Delen, Dursun
description The study reported herein proposes a new method for the diagnosis of epilepsy from electroencephalography (EEG) signals based on complex classifiers. To carry out this study, first the features of EEG data are extracted using a dual-tree complex wavelet transformation at different levels of granularity to obtain size reduction. In subsequent phases, five features (based on statistical measurements maximum value, minimum value, arithmetic mean, standard deviation, median value) are obtained by using the feature vectors, and are presented as the input dimension to the complex-valued neural networks. The evaluation of the proposed method is conducted using the k-fold cross-validation methodology, reporting on classification accuracy, sensitivity, and specificity. The proposed method is tested using a benchmark EEG dataset, and high accuracy rates were obtained. The stated results show that the proposed method can be used to design an accurate classification system for epilepsy diagnosis.
doi_str_mv 10.1109/JBHI.2014.2387795
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JBHI_2014_2387795</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7001559</ieee_id><sourcerecordid>1754524976</sourcerecordid><originalsourceid>FETCH-LOGICAL-c529t-621d5b8be0f375013d22b99ab9151df08cf4a023bdd2a82f8f362d3c972ee3953</originalsourceid><addsrcrecordid>eNqN0cFu1DAQBmALgWhV-gAICVniwiVbe5yJ7eOyFNqqwAHKNXLicXGVrEOcIPr2ZLXbHjjVl7Hsb0Ya_Yy9lmIlpbBnVx8uLlcgZLkCZbS2-Iwdg6xMASDM84e7tOURO835TizHLE-2esmOAFFXaPCYfV_zr-kPdfwLTb-S5yGNfD1PqXcTef4xutttyjHzFPj5EDsa8j2_yXF7yzepHzr6W_x03bzQTedyjiHSmF-xF8F1mU4P9YTdfDr_sbkorr99vtysr4sWwU5FBdJjYxoSQWkUUnmAxlrXWInSB2HaUDoBqvEenIFggqrAq9ZqIFIW1Ql7v587jOn3THmq-5hb6jq3pTTnWmpTgUAt9RNohbZEoZ5CsUQora4W-u4_epfmcbvsvFNKSTDGLkruVTumnEcK9TDG3o33tRT1Lsp6F2W9i7I-RLn0vD1Mnpue_GPHQ3ALeLMHkYgev7UQEtGqf-5Rn24</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1753312889</pqid></control><display><type>article</type><title>A Novel Method for Automated Diagnosis of Epilepsy Using Complex-Valued Classifiers</title><source>IEEE Electronic Library (IEL)</source><creator>Peker, Musa ; Sen, Baha ; Delen, Dursun</creator><creatorcontrib>Peker, Musa ; Sen, Baha ; Delen, Dursun</creatorcontrib><description>The study reported herein proposes a new method for the diagnosis of epilepsy from electroencephalography (EEG) signals based on complex classifiers. To carry out this study, first the features of EEG data are extracted using a dual-tree complex wavelet transformation at different levels of granularity to obtain size reduction. In subsequent phases, five features (based on statistical measurements maximum value, minimum value, arithmetic mean, standard deviation, median value) are obtained by using the feature vectors, and are presented as the input dimension to the complex-valued neural networks. The evaluation of the proposed method is conducted using the k-fold cross-validation methodology, reporting on classification accuracy, sensitivity, and specificity. The proposed method is tested using a benchmark EEG dataset, and high accuracy rates were obtained. The stated results show that the proposed method can be used to design an accurate classification system for epilepsy diagnosis.</description><identifier>ISSN: 2168-2194</identifier><identifier>EISSN: 2168-2208</identifier><identifier>DOI: 10.1109/JBHI.2014.2387795</identifier><identifier>PMID: 25576585</identifier><identifier>CODEN: IJBHA9</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Accuracy ; Algorithms ; Automation ; Biological neural networks ; Classification ; Classification algorithms ; Classifiers ; Complex-valued neural networks ; Diagnosis ; Dual-tree complex wavelet transform ; EEG signals ; Electroencephalography ; Electroencephalography - methods ; Epilepsy ; Epilepsy - diagnosis ; Feature based ; Humans ; Mathematical model ; Neural networks ; Neural Networks (Computer) ; Neurons ; Sensitivity and Specificity ; Wavelet Analysis</subject><ispartof>IEEE journal of biomedical and health informatics, 2016-01, Vol.20 (1), p.108-118</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c529t-621d5b8be0f375013d22b99ab9151df08cf4a023bdd2a82f8f362d3c972ee3953</citedby><cites>FETCH-LOGICAL-c529t-621d5b8be0f375013d22b99ab9151df08cf4a023bdd2a82f8f362d3c972ee3953</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7001559$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27922,27923,54756</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7001559$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25576585$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Peker, Musa</creatorcontrib><creatorcontrib>Sen, Baha</creatorcontrib><creatorcontrib>Delen, Dursun</creatorcontrib><title>A Novel Method for Automated Diagnosis of Epilepsy Using Complex-Valued Classifiers</title><title>IEEE journal of biomedical and health informatics</title><addtitle>JBHI</addtitle><addtitle>IEEE J Biomed Health Inform</addtitle><description>The study reported herein proposes a new method for the diagnosis of epilepsy from electroencephalography (EEG) signals based on complex classifiers. To carry out this study, first the features of EEG data are extracted using a dual-tree complex wavelet transformation at different levels of granularity to obtain size reduction. In subsequent phases, five features (based on statistical measurements maximum value, minimum value, arithmetic mean, standard deviation, median value) are obtained by using the feature vectors, and are presented as the input dimension to the complex-valued neural networks. The evaluation of the proposed method is conducted using the k-fold cross-validation methodology, reporting on classification accuracy, sensitivity, and specificity. The proposed method is tested using a benchmark EEG dataset, and high accuracy rates were obtained. The stated results show that the proposed method can be used to design an accurate classification system for epilepsy diagnosis.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Automation</subject><subject>Biological neural networks</subject><subject>Classification</subject><subject>Classification algorithms</subject><subject>Classifiers</subject><subject>Complex-valued neural networks</subject><subject>Diagnosis</subject><subject>Dual-tree complex wavelet transform</subject><subject>EEG signals</subject><subject>Electroencephalography</subject><subject>Electroencephalography - methods</subject><subject>Epilepsy</subject><subject>Epilepsy - diagnosis</subject><subject>Feature based</subject><subject>Humans</subject><subject>Mathematical model</subject><subject>Neural networks</subject><subject>Neural Networks (Computer)</subject><subject>Neurons</subject><subject>Sensitivity and Specificity</subject><subject>Wavelet Analysis</subject><issn>2168-2194</issn><issn>2168-2208</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNqN0cFu1DAQBmALgWhV-gAICVniwiVbe5yJ7eOyFNqqwAHKNXLicXGVrEOcIPr2ZLXbHjjVl7Hsb0Ya_Yy9lmIlpbBnVx8uLlcgZLkCZbS2-Iwdg6xMASDM84e7tOURO835TizHLE-2esmOAFFXaPCYfV_zr-kPdfwLTb-S5yGNfD1PqXcTef4xutttyjHzFPj5EDsa8j2_yXF7yzepHzr6W_x03bzQTedyjiHSmF-xF8F1mU4P9YTdfDr_sbkorr99vtysr4sWwU5FBdJjYxoSQWkUUnmAxlrXWInSB2HaUDoBqvEenIFggqrAq9ZqIFIW1Ql7v587jOn3THmq-5hb6jq3pTTnWmpTgUAt9RNohbZEoZ5CsUQora4W-u4_epfmcbvsvFNKSTDGLkruVTumnEcK9TDG3o33tRT1Lsp6F2W9i7I-RLn0vD1Mnpue_GPHQ3ALeLMHkYgev7UQEtGqf-5Rn24</recordid><startdate>201601</startdate><enddate>201601</enddate><creator>Peker, Musa</creator><creator>Sen, Baha</creator><creator>Delen, Dursun</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>201601</creationdate><title>A Novel Method for Automated Diagnosis of Epilepsy Using Complex-Valued Classifiers</title><author>Peker, Musa ; Sen, Baha ; Delen, Dursun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c529t-621d5b8be0f375013d22b99ab9151df08cf4a023bdd2a82f8f362d3c972ee3953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Automation</topic><topic>Biological neural networks</topic><topic>Classification</topic><topic>Classification algorithms</topic><topic>Classifiers</topic><topic>Complex-valued neural networks</topic><topic>Diagnosis</topic><topic>Dual-tree complex wavelet transform</topic><topic>EEG signals</topic><topic>Electroencephalography</topic><topic>Electroencephalography - methods</topic><topic>Epilepsy</topic><topic>Epilepsy - diagnosis</topic><topic>Feature based</topic><topic>Humans</topic><topic>Mathematical model</topic><topic>Neural networks</topic><topic>Neural Networks (Computer)</topic><topic>Neurons</topic><topic>Sensitivity and Specificity</topic><topic>Wavelet Analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Peker, Musa</creatorcontrib><creatorcontrib>Sen, Baha</creatorcontrib><creatorcontrib>Delen, Dursun</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE journal of biomedical and health informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Peker, Musa</au><au>Sen, Baha</au><au>Delen, Dursun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Novel Method for Automated Diagnosis of Epilepsy Using Complex-Valued Classifiers</atitle><jtitle>IEEE journal of biomedical and health informatics</jtitle><stitle>JBHI</stitle><addtitle>IEEE J Biomed Health Inform</addtitle><date>2016-01</date><risdate>2016</risdate><volume>20</volume><issue>1</issue><spage>108</spage><epage>118</epage><pages>108-118</pages><issn>2168-2194</issn><eissn>2168-2208</eissn><coden>IJBHA9</coden><abstract>The study reported herein proposes a new method for the diagnosis of epilepsy from electroencephalography (EEG) signals based on complex classifiers. To carry out this study, first the features of EEG data are extracted using a dual-tree complex wavelet transformation at different levels of granularity to obtain size reduction. In subsequent phases, five features (based on statistical measurements maximum value, minimum value, arithmetic mean, standard deviation, median value) are obtained by using the feature vectors, and are presented as the input dimension to the complex-valued neural networks. The evaluation of the proposed method is conducted using the k-fold cross-validation methodology, reporting on classification accuracy, sensitivity, and specificity. The proposed method is tested using a benchmark EEG dataset, and high accuracy rates were obtained. The stated results show that the proposed method can be used to design an accurate classification system for epilepsy diagnosis.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>25576585</pmid><doi>10.1109/JBHI.2014.2387795</doi><tpages>11</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2168-2194
ispartof IEEE journal of biomedical and health informatics, 2016-01, Vol.20 (1), p.108-118
issn 2168-2194
2168-2208
language eng
recordid cdi_crossref_primary_10_1109_JBHI_2014_2387795
source IEEE Electronic Library (IEL)
subjects Accuracy
Algorithms
Automation
Biological neural networks
Classification
Classification algorithms
Classifiers
Complex-valued neural networks
Diagnosis
Dual-tree complex wavelet transform
EEG signals
Electroencephalography
Electroencephalography - methods
Epilepsy
Epilepsy - diagnosis
Feature based
Humans
Mathematical model
Neural networks
Neural Networks (Computer)
Neurons
Sensitivity and Specificity
Wavelet Analysis
title A Novel Method for Automated Diagnosis of Epilepsy Using Complex-Valued Classifiers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T05%3A28%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Novel%20Method%20for%20Automated%20Diagnosis%20of%20Epilepsy%20Using%20Complex-Valued%20Classifiers&rft.jtitle=IEEE%20journal%20of%20biomedical%20and%20health%20informatics&rft.au=Peker,%20Musa&rft.date=2016-01&rft.volume=20&rft.issue=1&rft.spage=108&rft.epage=118&rft.pages=108-118&rft.issn=2168-2194&rft.eissn=2168-2208&rft.coden=IJBHA9&rft_id=info:doi/10.1109/JBHI.2014.2387795&rft_dat=%3Cproquest_RIE%3E1754524976%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1753312889&rft_id=info:pmid/25576585&rft_ieee_id=7001559&rfr_iscdi=true