A Novel Method for Automated Diagnosis of Epilepsy Using Complex-Valued Classifiers
The study reported herein proposes a new method for the diagnosis of epilepsy from electroencephalography (EEG) signals based on complex classifiers. To carry out this study, first the features of EEG data are extracted using a dual-tree complex wavelet transformation at different levels of granular...
Gespeichert in:
Veröffentlicht in: | IEEE journal of biomedical and health informatics 2016-01, Vol.20 (1), p.108-118 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 118 |
---|---|
container_issue | 1 |
container_start_page | 108 |
container_title | IEEE journal of biomedical and health informatics |
container_volume | 20 |
creator | Peker, Musa Sen, Baha Delen, Dursun |
description | The study reported herein proposes a new method for the diagnosis of epilepsy from electroencephalography (EEG) signals based on complex classifiers. To carry out this study, first the features of EEG data are extracted using a dual-tree complex wavelet transformation at different levels of granularity to obtain size reduction. In subsequent phases, five features (based on statistical measurements maximum value, minimum value, arithmetic mean, standard deviation, median value) are obtained by using the feature vectors, and are presented as the input dimension to the complex-valued neural networks. The evaluation of the proposed method is conducted using the k-fold cross-validation methodology, reporting on classification accuracy, sensitivity, and specificity. The proposed method is tested using a benchmark EEG dataset, and high accuracy rates were obtained. The stated results show that the proposed method can be used to design an accurate classification system for epilepsy diagnosis. |
doi_str_mv | 10.1109/JBHI.2014.2387795 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JBHI_2014_2387795</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7001559</ieee_id><sourcerecordid>1754524976</sourcerecordid><originalsourceid>FETCH-LOGICAL-c529t-621d5b8be0f375013d22b99ab9151df08cf4a023bdd2a82f8f362d3c972ee3953</originalsourceid><addsrcrecordid>eNqN0cFu1DAQBmALgWhV-gAICVniwiVbe5yJ7eOyFNqqwAHKNXLicXGVrEOcIPr2ZLXbHjjVl7Hsb0Ya_Yy9lmIlpbBnVx8uLlcgZLkCZbS2-Iwdg6xMASDM84e7tOURO835TizHLE-2esmOAFFXaPCYfV_zr-kPdfwLTb-S5yGNfD1PqXcTef4xutttyjHzFPj5EDsa8j2_yXF7yzepHzr6W_x03bzQTedyjiHSmF-xF8F1mU4P9YTdfDr_sbkorr99vtysr4sWwU5FBdJjYxoSQWkUUnmAxlrXWInSB2HaUDoBqvEenIFggqrAq9ZqIFIW1Ql7v587jOn3THmq-5hb6jq3pTTnWmpTgUAt9RNohbZEoZ5CsUQora4W-u4_epfmcbvsvFNKSTDGLkruVTumnEcK9TDG3o33tRT1Lsp6F2W9i7I-RLn0vD1Mnpue_GPHQ3ALeLMHkYgev7UQEtGqf-5Rn24</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1753312889</pqid></control><display><type>article</type><title>A Novel Method for Automated Diagnosis of Epilepsy Using Complex-Valued Classifiers</title><source>IEEE Electronic Library (IEL)</source><creator>Peker, Musa ; Sen, Baha ; Delen, Dursun</creator><creatorcontrib>Peker, Musa ; Sen, Baha ; Delen, Dursun</creatorcontrib><description>The study reported herein proposes a new method for the diagnosis of epilepsy from electroencephalography (EEG) signals based on complex classifiers. To carry out this study, first the features of EEG data are extracted using a dual-tree complex wavelet transformation at different levels of granularity to obtain size reduction. In subsequent phases, five features (based on statistical measurements maximum value, minimum value, arithmetic mean, standard deviation, median value) are obtained by using the feature vectors, and are presented as the input dimension to the complex-valued neural networks. The evaluation of the proposed method is conducted using the k-fold cross-validation methodology, reporting on classification accuracy, sensitivity, and specificity. The proposed method is tested using a benchmark EEG dataset, and high accuracy rates were obtained. The stated results show that the proposed method can be used to design an accurate classification system for epilepsy diagnosis.</description><identifier>ISSN: 2168-2194</identifier><identifier>EISSN: 2168-2208</identifier><identifier>DOI: 10.1109/JBHI.2014.2387795</identifier><identifier>PMID: 25576585</identifier><identifier>CODEN: IJBHA9</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Accuracy ; Algorithms ; Automation ; Biological neural networks ; Classification ; Classification algorithms ; Classifiers ; Complex-valued neural networks ; Diagnosis ; Dual-tree complex wavelet transform ; EEG signals ; Electroencephalography ; Electroencephalography - methods ; Epilepsy ; Epilepsy - diagnosis ; Feature based ; Humans ; Mathematical model ; Neural networks ; Neural Networks (Computer) ; Neurons ; Sensitivity and Specificity ; Wavelet Analysis</subject><ispartof>IEEE journal of biomedical and health informatics, 2016-01, Vol.20 (1), p.108-118</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c529t-621d5b8be0f375013d22b99ab9151df08cf4a023bdd2a82f8f362d3c972ee3953</citedby><cites>FETCH-LOGICAL-c529t-621d5b8be0f375013d22b99ab9151df08cf4a023bdd2a82f8f362d3c972ee3953</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7001559$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27922,27923,54756</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7001559$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25576585$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Peker, Musa</creatorcontrib><creatorcontrib>Sen, Baha</creatorcontrib><creatorcontrib>Delen, Dursun</creatorcontrib><title>A Novel Method for Automated Diagnosis of Epilepsy Using Complex-Valued Classifiers</title><title>IEEE journal of biomedical and health informatics</title><addtitle>JBHI</addtitle><addtitle>IEEE J Biomed Health Inform</addtitle><description>The study reported herein proposes a new method for the diagnosis of epilepsy from electroencephalography (EEG) signals based on complex classifiers. To carry out this study, first the features of EEG data are extracted using a dual-tree complex wavelet transformation at different levels of granularity to obtain size reduction. In subsequent phases, five features (based on statistical measurements maximum value, minimum value, arithmetic mean, standard deviation, median value) are obtained by using the feature vectors, and are presented as the input dimension to the complex-valued neural networks. The evaluation of the proposed method is conducted using the k-fold cross-validation methodology, reporting on classification accuracy, sensitivity, and specificity. The proposed method is tested using a benchmark EEG dataset, and high accuracy rates were obtained. The stated results show that the proposed method can be used to design an accurate classification system for epilepsy diagnosis.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Automation</subject><subject>Biological neural networks</subject><subject>Classification</subject><subject>Classification algorithms</subject><subject>Classifiers</subject><subject>Complex-valued neural networks</subject><subject>Diagnosis</subject><subject>Dual-tree complex wavelet transform</subject><subject>EEG signals</subject><subject>Electroencephalography</subject><subject>Electroencephalography - methods</subject><subject>Epilepsy</subject><subject>Epilepsy - diagnosis</subject><subject>Feature based</subject><subject>Humans</subject><subject>Mathematical model</subject><subject>Neural networks</subject><subject>Neural Networks (Computer)</subject><subject>Neurons</subject><subject>Sensitivity and Specificity</subject><subject>Wavelet Analysis</subject><issn>2168-2194</issn><issn>2168-2208</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNqN0cFu1DAQBmALgWhV-gAICVniwiVbe5yJ7eOyFNqqwAHKNXLicXGVrEOcIPr2ZLXbHjjVl7Hsb0Ya_Yy9lmIlpbBnVx8uLlcgZLkCZbS2-Iwdg6xMASDM84e7tOURO835TizHLE-2esmOAFFXaPCYfV_zr-kPdfwLTb-S5yGNfD1PqXcTef4xutttyjHzFPj5EDsa8j2_yXF7yzepHzr6W_x03bzQTedyjiHSmF-xF8F1mU4P9YTdfDr_sbkorr99vtysr4sWwU5FBdJjYxoSQWkUUnmAxlrXWInSB2HaUDoBqvEenIFggqrAq9ZqIFIW1Ql7v587jOn3THmq-5hb6jq3pTTnWmpTgUAt9RNohbZEoZ5CsUQora4W-u4_epfmcbvsvFNKSTDGLkruVTumnEcK9TDG3o33tRT1Lsp6F2W9i7I-RLn0vD1Mnpue_GPHQ3ALeLMHkYgev7UQEtGqf-5Rn24</recordid><startdate>201601</startdate><enddate>201601</enddate><creator>Peker, Musa</creator><creator>Sen, Baha</creator><creator>Delen, Dursun</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>201601</creationdate><title>A Novel Method for Automated Diagnosis of Epilepsy Using Complex-Valued Classifiers</title><author>Peker, Musa ; Sen, Baha ; Delen, Dursun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c529t-621d5b8be0f375013d22b99ab9151df08cf4a023bdd2a82f8f362d3c972ee3953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Automation</topic><topic>Biological neural networks</topic><topic>Classification</topic><topic>Classification algorithms</topic><topic>Classifiers</topic><topic>Complex-valued neural networks</topic><topic>Diagnosis</topic><topic>Dual-tree complex wavelet transform</topic><topic>EEG signals</topic><topic>Electroencephalography</topic><topic>Electroencephalography - methods</topic><topic>Epilepsy</topic><topic>Epilepsy - diagnosis</topic><topic>Feature based</topic><topic>Humans</topic><topic>Mathematical model</topic><topic>Neural networks</topic><topic>Neural Networks (Computer)</topic><topic>Neurons</topic><topic>Sensitivity and Specificity</topic><topic>Wavelet Analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Peker, Musa</creatorcontrib><creatorcontrib>Sen, Baha</creatorcontrib><creatorcontrib>Delen, Dursun</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE journal of biomedical and health informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Peker, Musa</au><au>Sen, Baha</au><au>Delen, Dursun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Novel Method for Automated Diagnosis of Epilepsy Using Complex-Valued Classifiers</atitle><jtitle>IEEE journal of biomedical and health informatics</jtitle><stitle>JBHI</stitle><addtitle>IEEE J Biomed Health Inform</addtitle><date>2016-01</date><risdate>2016</risdate><volume>20</volume><issue>1</issue><spage>108</spage><epage>118</epage><pages>108-118</pages><issn>2168-2194</issn><eissn>2168-2208</eissn><coden>IJBHA9</coden><abstract>The study reported herein proposes a new method for the diagnosis of epilepsy from electroencephalography (EEG) signals based on complex classifiers. To carry out this study, first the features of EEG data are extracted using a dual-tree complex wavelet transformation at different levels of granularity to obtain size reduction. In subsequent phases, five features (based on statistical measurements maximum value, minimum value, arithmetic mean, standard deviation, median value) are obtained by using the feature vectors, and are presented as the input dimension to the complex-valued neural networks. The evaluation of the proposed method is conducted using the k-fold cross-validation methodology, reporting on classification accuracy, sensitivity, and specificity. The proposed method is tested using a benchmark EEG dataset, and high accuracy rates were obtained. The stated results show that the proposed method can be used to design an accurate classification system for epilepsy diagnosis.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>25576585</pmid><doi>10.1109/JBHI.2014.2387795</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2168-2194 |
ispartof | IEEE journal of biomedical and health informatics, 2016-01, Vol.20 (1), p.108-118 |
issn | 2168-2194 2168-2208 |
language | eng |
recordid | cdi_crossref_primary_10_1109_JBHI_2014_2387795 |
source | IEEE Electronic Library (IEL) |
subjects | Accuracy Algorithms Automation Biological neural networks Classification Classification algorithms Classifiers Complex-valued neural networks Diagnosis Dual-tree complex wavelet transform EEG signals Electroencephalography Electroencephalography - methods Epilepsy Epilepsy - diagnosis Feature based Humans Mathematical model Neural networks Neural Networks (Computer) Neurons Sensitivity and Specificity Wavelet Analysis |
title | A Novel Method for Automated Diagnosis of Epilepsy Using Complex-Valued Classifiers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T05%3A28%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Novel%20Method%20for%20Automated%20Diagnosis%20of%20Epilepsy%20Using%20Complex-Valued%20Classifiers&rft.jtitle=IEEE%20journal%20of%20biomedical%20and%20health%20informatics&rft.au=Peker,%20Musa&rft.date=2016-01&rft.volume=20&rft.issue=1&rft.spage=108&rft.epage=118&rft.pages=108-118&rft.issn=2168-2194&rft.eissn=2168-2208&rft.coden=IJBHA9&rft_id=info:doi/10.1109/JBHI.2014.2387795&rft_dat=%3Cproquest_RIE%3E1754524976%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1753312889&rft_id=info:pmid/25576585&rft_ieee_id=7001559&rfr_iscdi=true |