An Evaluation of Cardiorespiratory and Movement Features With Respect to Sleep-Stage Classification

Polysomnography (PSG) is considered the gold standard to assess sleep accurately, but it can be expensive, time-consuming, and uncomfortable, specifically in long-term sleep studies. Actigraphy, on the other hand, is both cheap and user-friendly, but depending on the application lacks detail and acc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of biomedical and health informatics 2014-03, Vol.18 (2), p.661-669
Hauptverfasser: Willemen, T., Van Deun, D., Verhaert, V., Vandekerckhove, M., Exadaktylos, V., Verbraecken, J., Van Huffel, S., Haex, B., Vander Sloten, Jos
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 669
container_issue 2
container_start_page 661
container_title IEEE journal of biomedical and health informatics
container_volume 18
creator Willemen, T.
Van Deun, D.
Verhaert, V.
Vandekerckhove, M.
Exadaktylos, V.
Verbraecken, J.
Van Huffel, S.
Haex, B.
Vander Sloten, Jos
description Polysomnography (PSG) is considered the gold standard to assess sleep accurately, but it can be expensive, time-consuming, and uncomfortable, specifically in long-term sleep studies. Actigraphy, on the other hand, is both cheap and user-friendly, but depending on the application lacks detail and accuracy. Our aim was to evaluate cardiorespiratory and movement signals in discriminating between wake, rapid-eye-movement (REM), light (N1N2), and deep (N3) sleep. The dataset comprised 85 nights of PSG from a healthy population. Starting from a total of 750 characteristic variables (features), problem-specific subsets of 40 features were forwardly selected using the combination of a wrapper method (Cohen's kappa statistic on radial basis function (RBF)-kernel support vector machine (SVM) classifier) and filter method (minimum redundancy maximum relevance criterion on mutual information). Final classification was performed using an RBF-kernel SVM. Non-subject-specific wake versus sleep classification resulted in a Cohen's kappa value of 0.695, while REM versus NREM resulted in 0.558 and N3 versus N1N2 in 0.553. The broad pool of initial features gave insight in which features discriminated best between the different classes. The classification results demonstrate the possibility of making long-term sleep monitoring more widely available.
doi_str_mv 10.1109/JBHI.2013.2276083
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JBHI_2013_2276083</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6600727</ieee_id><sourcerecordid>1518245945</sourcerecordid><originalsourceid>FETCH-LOGICAL-c440t-d8b2d80498cc9239bcd1d1bcb4bd45e4cb51c8900fb185c57f70d9b5ce1f6b73</originalsourceid><addsrcrecordid>eNpdkU1rHDEMhk1paUKaH1AKxdBLL7ORPfaMfUyXpElIKTSBHgd_aFqH2fHW9gTy7-vtbnKoLhLSoxehl5D3DFaMgT67-XJ1veLA2hXnfQeqfUWOOetUwzmo18810-KInOb8ADVUbenuLTniAqSClh0Tdz7Ti0czLaaEONM40rVJPsSEeRuSKTE9UTN7-i0-4gbnQi_RlKVO6c9QftMfFUNXaIn0bkLcNnfF_EK6nkzOYQzun-o78mY0U8bTQz4h95cX9-ur5vb71-v1-W3jhIDSeGW5VyC0ck7zVlvnmWfWWWG9kCiclcwpDTBapqST_diD11Y6ZGNn-_aEfN7LblP8s2AuwyZkh9NkZoxLHphkiguphazop__Qh7ikuR5XKZCMQ9fuBNmecinmnHActilsTHoaGAw7D4adB8POg-HgQd35eFBe7Ab9y8bzxyvwYQ8ERHwZdx1Az_v2L40piqY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1505120637</pqid></control><display><type>article</type><title>An Evaluation of Cardiorespiratory and Movement Features With Respect to Sleep-Stage Classification</title><source>IEEE Electronic Library (IEL)</source><creator>Willemen, T. ; Van Deun, D. ; Verhaert, V. ; Vandekerckhove, M. ; Exadaktylos, V. ; Verbraecken, J. ; Van Huffel, S. ; Haex, B. ; Vander Sloten, Jos</creator><creatorcontrib>Willemen, T. ; Van Deun, D. ; Verhaert, V. ; Vandekerckhove, M. ; Exadaktylos, V. ; Verbraecken, J. ; Van Huffel, S. ; Haex, B. ; Vander Sloten, Jos</creatorcontrib><description>Polysomnography (PSG) is considered the gold standard to assess sleep accurately, but it can be expensive, time-consuming, and uncomfortable, specifically in long-term sleep studies. Actigraphy, on the other hand, is both cheap and user-friendly, but depending on the application lacks detail and accuracy. Our aim was to evaluate cardiorespiratory and movement signals in discriminating between wake, rapid-eye-movement (REM), light (N1N2), and deep (N3) sleep. The dataset comprised 85 nights of PSG from a healthy population. Starting from a total of 750 characteristic variables (features), problem-specific subsets of 40 features were forwardly selected using the combination of a wrapper method (Cohen's kappa statistic on radial basis function (RBF)-kernel support vector machine (SVM) classifier) and filter method (minimum redundancy maximum relevance criterion on mutual information). Final classification was performed using an RBF-kernel SVM. Non-subject-specific wake versus sleep classification resulted in a Cohen's kappa value of 0.695, while REM versus NREM resulted in 0.558 and N3 versus N1N2 in 0.553. The broad pool of initial features gave insight in which features discriminated best between the different classes. The classification results demonstrate the possibility of making long-term sleep monitoring more widely available.</description><identifier>ISSN: 2168-2194</identifier><identifier>EISSN: 2168-2208</identifier><identifier>DOI: 10.1109/JBHI.2013.2276083</identifier><identifier>PMID: 24058031</identifier><identifier>CODEN: IJBHA9</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Adult ; Biomedical signal processing ; Classification ; data analysis ; Electrocardiography ; Feature extraction ; Heart rate ; Heart Rate - physiology ; Humans ; Medical Informatics Applications ; medical information systems ; Movement - physiology ; Polysomnography - methods ; Respiration ; Robustness ; Signal Processing, Computer-Assisted ; Sleep ; Sleep apnea ; sleep research ; supervised learning ; Support Vector Machine ; Support vector machines ; Training ; Young Adult</subject><ispartof>IEEE journal of biomedical and health informatics, 2014-03, Vol.18 (2), p.661-669</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Mar 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c440t-d8b2d80498cc9239bcd1d1bcb4bd45e4cb51c8900fb185c57f70d9b5ce1f6b73</citedby><cites>FETCH-LOGICAL-c440t-d8b2d80498cc9239bcd1d1bcb4bd45e4cb51c8900fb185c57f70d9b5ce1f6b73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6600727$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6600727$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24058031$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Willemen, T.</creatorcontrib><creatorcontrib>Van Deun, D.</creatorcontrib><creatorcontrib>Verhaert, V.</creatorcontrib><creatorcontrib>Vandekerckhove, M.</creatorcontrib><creatorcontrib>Exadaktylos, V.</creatorcontrib><creatorcontrib>Verbraecken, J.</creatorcontrib><creatorcontrib>Van Huffel, S.</creatorcontrib><creatorcontrib>Haex, B.</creatorcontrib><creatorcontrib>Vander Sloten, Jos</creatorcontrib><title>An Evaluation of Cardiorespiratory and Movement Features With Respect to Sleep-Stage Classification</title><title>IEEE journal of biomedical and health informatics</title><addtitle>JBHI</addtitle><addtitle>IEEE J Biomed Health Inform</addtitle><description>Polysomnography (PSG) is considered the gold standard to assess sleep accurately, but it can be expensive, time-consuming, and uncomfortable, specifically in long-term sleep studies. Actigraphy, on the other hand, is both cheap and user-friendly, but depending on the application lacks detail and accuracy. Our aim was to evaluate cardiorespiratory and movement signals in discriminating between wake, rapid-eye-movement (REM), light (N1N2), and deep (N3) sleep. The dataset comprised 85 nights of PSG from a healthy population. Starting from a total of 750 characteristic variables (features), problem-specific subsets of 40 features were forwardly selected using the combination of a wrapper method (Cohen's kappa statistic on radial basis function (RBF)-kernel support vector machine (SVM) classifier) and filter method (minimum redundancy maximum relevance criterion on mutual information). Final classification was performed using an RBF-kernel SVM. Non-subject-specific wake versus sleep classification resulted in a Cohen's kappa value of 0.695, while REM versus NREM resulted in 0.558 and N3 versus N1N2 in 0.553. The broad pool of initial features gave insight in which features discriminated best between the different classes. The classification results demonstrate the possibility of making long-term sleep monitoring more widely available.</description><subject>Adult</subject><subject>Biomedical signal processing</subject><subject>Classification</subject><subject>data analysis</subject><subject>Electrocardiography</subject><subject>Feature extraction</subject><subject>Heart rate</subject><subject>Heart Rate - physiology</subject><subject>Humans</subject><subject>Medical Informatics Applications</subject><subject>medical information systems</subject><subject>Movement - physiology</subject><subject>Polysomnography - methods</subject><subject>Respiration</subject><subject>Robustness</subject><subject>Signal Processing, Computer-Assisted</subject><subject>Sleep</subject><subject>Sleep apnea</subject><subject>sleep research</subject><subject>supervised learning</subject><subject>Support Vector Machine</subject><subject>Support vector machines</subject><subject>Training</subject><subject>Young Adult</subject><issn>2168-2194</issn><issn>2168-2208</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNpdkU1rHDEMhk1paUKaH1AKxdBLL7ORPfaMfUyXpElIKTSBHgd_aFqH2fHW9gTy7-vtbnKoLhLSoxehl5D3DFaMgT67-XJ1veLA2hXnfQeqfUWOOetUwzmo18810-KInOb8ADVUbenuLTniAqSClh0Tdz7Ti0czLaaEONM40rVJPsSEeRuSKTE9UTN7-i0-4gbnQi_RlKVO6c9QftMfFUNXaIn0bkLcNnfF_EK6nkzOYQzun-o78mY0U8bTQz4h95cX9-ur5vb71-v1-W3jhIDSeGW5VyC0ck7zVlvnmWfWWWG9kCiclcwpDTBapqST_diD11Y6ZGNn-_aEfN7LblP8s2AuwyZkh9NkZoxLHphkiguphazop__Qh7ikuR5XKZCMQ9fuBNmecinmnHActilsTHoaGAw7D4adB8POg-HgQd35eFBe7Ab9y8bzxyvwYQ8ERHwZdx1Az_v2L40piqY</recordid><startdate>20140301</startdate><enddate>20140301</enddate><creator>Willemen, T.</creator><creator>Van Deun, D.</creator><creator>Verhaert, V.</creator><creator>Vandekerckhove, M.</creator><creator>Exadaktylos, V.</creator><creator>Verbraecken, J.</creator><creator>Van Huffel, S.</creator><creator>Haex, B.</creator><creator>Vander Sloten, Jos</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20140301</creationdate><title>An Evaluation of Cardiorespiratory and Movement Features With Respect to Sleep-Stage Classification</title><author>Willemen, T. ; Van Deun, D. ; Verhaert, V. ; Vandekerckhove, M. ; Exadaktylos, V. ; Verbraecken, J. ; Van Huffel, S. ; Haex, B. ; Vander Sloten, Jos</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c440t-d8b2d80498cc9239bcd1d1bcb4bd45e4cb51c8900fb185c57f70d9b5ce1f6b73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Adult</topic><topic>Biomedical signal processing</topic><topic>Classification</topic><topic>data analysis</topic><topic>Electrocardiography</topic><topic>Feature extraction</topic><topic>Heart rate</topic><topic>Heart Rate - physiology</topic><topic>Humans</topic><topic>Medical Informatics Applications</topic><topic>medical information systems</topic><topic>Movement - physiology</topic><topic>Polysomnography - methods</topic><topic>Respiration</topic><topic>Robustness</topic><topic>Signal Processing, Computer-Assisted</topic><topic>Sleep</topic><topic>Sleep apnea</topic><topic>sleep research</topic><topic>supervised learning</topic><topic>Support Vector Machine</topic><topic>Support vector machines</topic><topic>Training</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Willemen, T.</creatorcontrib><creatorcontrib>Van Deun, D.</creatorcontrib><creatorcontrib>Verhaert, V.</creatorcontrib><creatorcontrib>Vandekerckhove, M.</creatorcontrib><creatorcontrib>Exadaktylos, V.</creatorcontrib><creatorcontrib>Verbraecken, J.</creatorcontrib><creatorcontrib>Van Huffel, S.</creatorcontrib><creatorcontrib>Haex, B.</creatorcontrib><creatorcontrib>Vander Sloten, Jos</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE journal of biomedical and health informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Willemen, T.</au><au>Van Deun, D.</au><au>Verhaert, V.</au><au>Vandekerckhove, M.</au><au>Exadaktylos, V.</au><au>Verbraecken, J.</au><au>Van Huffel, S.</au><au>Haex, B.</au><au>Vander Sloten, Jos</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Evaluation of Cardiorespiratory and Movement Features With Respect to Sleep-Stage Classification</atitle><jtitle>IEEE journal of biomedical and health informatics</jtitle><stitle>JBHI</stitle><addtitle>IEEE J Biomed Health Inform</addtitle><date>2014-03-01</date><risdate>2014</risdate><volume>18</volume><issue>2</issue><spage>661</spage><epage>669</epage><pages>661-669</pages><issn>2168-2194</issn><eissn>2168-2208</eissn><coden>IJBHA9</coden><abstract>Polysomnography (PSG) is considered the gold standard to assess sleep accurately, but it can be expensive, time-consuming, and uncomfortable, specifically in long-term sleep studies. Actigraphy, on the other hand, is both cheap and user-friendly, but depending on the application lacks detail and accuracy. Our aim was to evaluate cardiorespiratory and movement signals in discriminating between wake, rapid-eye-movement (REM), light (N1N2), and deep (N3) sleep. The dataset comprised 85 nights of PSG from a healthy population. Starting from a total of 750 characteristic variables (features), problem-specific subsets of 40 features were forwardly selected using the combination of a wrapper method (Cohen's kappa statistic on radial basis function (RBF)-kernel support vector machine (SVM) classifier) and filter method (minimum redundancy maximum relevance criterion on mutual information). Final classification was performed using an RBF-kernel SVM. Non-subject-specific wake versus sleep classification resulted in a Cohen's kappa value of 0.695, while REM versus NREM resulted in 0.558 and N3 versus N1N2 in 0.553. The broad pool of initial features gave insight in which features discriminated best between the different classes. The classification results demonstrate the possibility of making long-term sleep monitoring more widely available.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>24058031</pmid><doi>10.1109/JBHI.2013.2276083</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2168-2194
ispartof IEEE journal of biomedical and health informatics, 2014-03, Vol.18 (2), p.661-669
issn 2168-2194
2168-2208
language eng
recordid cdi_crossref_primary_10_1109_JBHI_2013_2276083
source IEEE Electronic Library (IEL)
subjects Adult
Biomedical signal processing
Classification
data analysis
Electrocardiography
Feature extraction
Heart rate
Heart Rate - physiology
Humans
Medical Informatics Applications
medical information systems
Movement - physiology
Polysomnography - methods
Respiration
Robustness
Signal Processing, Computer-Assisted
Sleep
Sleep apnea
sleep research
supervised learning
Support Vector Machine
Support vector machines
Training
Young Adult
title An Evaluation of Cardiorespiratory and Movement Features With Respect to Sleep-Stage Classification
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T17%3A50%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Evaluation%20of%20Cardiorespiratory%20and%20Movement%20Features%20With%20Respect%20to%20Sleep-Stage%20Classification&rft.jtitle=IEEE%20journal%20of%20biomedical%20and%20health%20informatics&rft.au=Willemen,%20T.&rft.date=2014-03-01&rft.volume=18&rft.issue=2&rft.spage=661&rft.epage=669&rft.pages=661-669&rft.issn=2168-2194&rft.eissn=2168-2208&rft.coden=IJBHA9&rft_id=info:doi/10.1109/JBHI.2013.2276083&rft_dat=%3Cproquest_RIE%3E1518245945%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1505120637&rft_id=info:pmid/24058031&rft_ieee_id=6600727&rfr_iscdi=true