An Evaluation of Cardiorespiratory and Movement Features With Respect to Sleep-Stage Classification
Polysomnography (PSG) is considered the gold standard to assess sleep accurately, but it can be expensive, time-consuming, and uncomfortable, specifically in long-term sleep studies. Actigraphy, on the other hand, is both cheap and user-friendly, but depending on the application lacks detail and acc...
Gespeichert in:
Veröffentlicht in: | IEEE journal of biomedical and health informatics 2014-03, Vol.18 (2), p.661-669 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 669 |
---|---|
container_issue | 2 |
container_start_page | 661 |
container_title | IEEE journal of biomedical and health informatics |
container_volume | 18 |
creator | Willemen, T. Van Deun, D. Verhaert, V. Vandekerckhove, M. Exadaktylos, V. Verbraecken, J. Van Huffel, S. Haex, B. Vander Sloten, Jos |
description | Polysomnography (PSG) is considered the gold standard to assess sleep accurately, but it can be expensive, time-consuming, and uncomfortable, specifically in long-term sleep studies. Actigraphy, on the other hand, is both cheap and user-friendly, but depending on the application lacks detail and accuracy. Our aim was to evaluate cardiorespiratory and movement signals in discriminating between wake, rapid-eye-movement (REM), light (N1N2), and deep (N3) sleep. The dataset comprised 85 nights of PSG from a healthy population. Starting from a total of 750 characteristic variables (features), problem-specific subsets of 40 features were forwardly selected using the combination of a wrapper method (Cohen's kappa statistic on radial basis function (RBF)-kernel support vector machine (SVM) classifier) and filter method (minimum redundancy maximum relevance criterion on mutual information). Final classification was performed using an RBF-kernel SVM. Non-subject-specific wake versus sleep classification resulted in a Cohen's kappa value of 0.695, while REM versus NREM resulted in 0.558 and N3 versus N1N2 in 0.553. The broad pool of initial features gave insight in which features discriminated best between the different classes. The classification results demonstrate the possibility of making long-term sleep monitoring more widely available. |
doi_str_mv | 10.1109/JBHI.2013.2276083 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JBHI_2013_2276083</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6600727</ieee_id><sourcerecordid>1518245945</sourcerecordid><originalsourceid>FETCH-LOGICAL-c440t-d8b2d80498cc9239bcd1d1bcb4bd45e4cb51c8900fb185c57f70d9b5ce1f6b73</originalsourceid><addsrcrecordid>eNpdkU1rHDEMhk1paUKaH1AKxdBLL7ORPfaMfUyXpElIKTSBHgd_aFqH2fHW9gTy7-vtbnKoLhLSoxehl5D3DFaMgT67-XJ1veLA2hXnfQeqfUWOOetUwzmo18810-KInOb8ADVUbenuLTniAqSClh0Tdz7Ti0czLaaEONM40rVJPsSEeRuSKTE9UTN7-i0-4gbnQi_RlKVO6c9QftMfFUNXaIn0bkLcNnfF_EK6nkzOYQzun-o78mY0U8bTQz4h95cX9-ur5vb71-v1-W3jhIDSeGW5VyC0ck7zVlvnmWfWWWG9kCiclcwpDTBapqST_diD11Y6ZGNn-_aEfN7LblP8s2AuwyZkh9NkZoxLHphkiguphazop__Qh7ikuR5XKZCMQ9fuBNmecinmnHActilsTHoaGAw7D4adB8POg-HgQd35eFBe7Ab9y8bzxyvwYQ8ERHwZdx1Az_v2L40piqY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1505120637</pqid></control><display><type>article</type><title>An Evaluation of Cardiorespiratory and Movement Features With Respect to Sleep-Stage Classification</title><source>IEEE Electronic Library (IEL)</source><creator>Willemen, T. ; Van Deun, D. ; Verhaert, V. ; Vandekerckhove, M. ; Exadaktylos, V. ; Verbraecken, J. ; Van Huffel, S. ; Haex, B. ; Vander Sloten, Jos</creator><creatorcontrib>Willemen, T. ; Van Deun, D. ; Verhaert, V. ; Vandekerckhove, M. ; Exadaktylos, V. ; Verbraecken, J. ; Van Huffel, S. ; Haex, B. ; Vander Sloten, Jos</creatorcontrib><description>Polysomnography (PSG) is considered the gold standard to assess sleep accurately, but it can be expensive, time-consuming, and uncomfortable, specifically in long-term sleep studies. Actigraphy, on the other hand, is both cheap and user-friendly, but depending on the application lacks detail and accuracy. Our aim was to evaluate cardiorespiratory and movement signals in discriminating between wake, rapid-eye-movement (REM), light (N1N2), and deep (N3) sleep. The dataset comprised 85 nights of PSG from a healthy population. Starting from a total of 750 characteristic variables (features), problem-specific subsets of 40 features were forwardly selected using the combination of a wrapper method (Cohen's kappa statistic on radial basis function (RBF)-kernel support vector machine (SVM) classifier) and filter method (minimum redundancy maximum relevance criterion on mutual information). Final classification was performed using an RBF-kernel SVM. Non-subject-specific wake versus sleep classification resulted in a Cohen's kappa value of 0.695, while REM versus NREM resulted in 0.558 and N3 versus N1N2 in 0.553. The broad pool of initial features gave insight in which features discriminated best between the different classes. The classification results demonstrate the possibility of making long-term sleep monitoring more widely available.</description><identifier>ISSN: 2168-2194</identifier><identifier>EISSN: 2168-2208</identifier><identifier>DOI: 10.1109/JBHI.2013.2276083</identifier><identifier>PMID: 24058031</identifier><identifier>CODEN: IJBHA9</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Adult ; Biomedical signal processing ; Classification ; data analysis ; Electrocardiography ; Feature extraction ; Heart rate ; Heart Rate - physiology ; Humans ; Medical Informatics Applications ; medical information systems ; Movement - physiology ; Polysomnography - methods ; Respiration ; Robustness ; Signal Processing, Computer-Assisted ; Sleep ; Sleep apnea ; sleep research ; supervised learning ; Support Vector Machine ; Support vector machines ; Training ; Young Adult</subject><ispartof>IEEE journal of biomedical and health informatics, 2014-03, Vol.18 (2), p.661-669</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Mar 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c440t-d8b2d80498cc9239bcd1d1bcb4bd45e4cb51c8900fb185c57f70d9b5ce1f6b73</citedby><cites>FETCH-LOGICAL-c440t-d8b2d80498cc9239bcd1d1bcb4bd45e4cb51c8900fb185c57f70d9b5ce1f6b73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6600727$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6600727$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24058031$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Willemen, T.</creatorcontrib><creatorcontrib>Van Deun, D.</creatorcontrib><creatorcontrib>Verhaert, V.</creatorcontrib><creatorcontrib>Vandekerckhove, M.</creatorcontrib><creatorcontrib>Exadaktylos, V.</creatorcontrib><creatorcontrib>Verbraecken, J.</creatorcontrib><creatorcontrib>Van Huffel, S.</creatorcontrib><creatorcontrib>Haex, B.</creatorcontrib><creatorcontrib>Vander Sloten, Jos</creatorcontrib><title>An Evaluation of Cardiorespiratory and Movement Features With Respect to Sleep-Stage Classification</title><title>IEEE journal of biomedical and health informatics</title><addtitle>JBHI</addtitle><addtitle>IEEE J Biomed Health Inform</addtitle><description>Polysomnography (PSG) is considered the gold standard to assess sleep accurately, but it can be expensive, time-consuming, and uncomfortable, specifically in long-term sleep studies. Actigraphy, on the other hand, is both cheap and user-friendly, but depending on the application lacks detail and accuracy. Our aim was to evaluate cardiorespiratory and movement signals in discriminating between wake, rapid-eye-movement (REM), light (N1N2), and deep (N3) sleep. The dataset comprised 85 nights of PSG from a healthy population. Starting from a total of 750 characteristic variables (features), problem-specific subsets of 40 features were forwardly selected using the combination of a wrapper method (Cohen's kappa statistic on radial basis function (RBF)-kernel support vector machine (SVM) classifier) and filter method (minimum redundancy maximum relevance criterion on mutual information). Final classification was performed using an RBF-kernel SVM. Non-subject-specific wake versus sleep classification resulted in a Cohen's kappa value of 0.695, while REM versus NREM resulted in 0.558 and N3 versus N1N2 in 0.553. The broad pool of initial features gave insight in which features discriminated best between the different classes. The classification results demonstrate the possibility of making long-term sleep monitoring more widely available.</description><subject>Adult</subject><subject>Biomedical signal processing</subject><subject>Classification</subject><subject>data analysis</subject><subject>Electrocardiography</subject><subject>Feature extraction</subject><subject>Heart rate</subject><subject>Heart Rate - physiology</subject><subject>Humans</subject><subject>Medical Informatics Applications</subject><subject>medical information systems</subject><subject>Movement - physiology</subject><subject>Polysomnography - methods</subject><subject>Respiration</subject><subject>Robustness</subject><subject>Signal Processing, Computer-Assisted</subject><subject>Sleep</subject><subject>Sleep apnea</subject><subject>sleep research</subject><subject>supervised learning</subject><subject>Support Vector Machine</subject><subject>Support vector machines</subject><subject>Training</subject><subject>Young Adult</subject><issn>2168-2194</issn><issn>2168-2208</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNpdkU1rHDEMhk1paUKaH1AKxdBLL7ORPfaMfUyXpElIKTSBHgd_aFqH2fHW9gTy7-vtbnKoLhLSoxehl5D3DFaMgT67-XJ1veLA2hXnfQeqfUWOOetUwzmo18810-KInOb8ADVUbenuLTniAqSClh0Tdz7Ti0czLaaEONM40rVJPsSEeRuSKTE9UTN7-i0-4gbnQi_RlKVO6c9QftMfFUNXaIn0bkLcNnfF_EK6nkzOYQzun-o78mY0U8bTQz4h95cX9-ur5vb71-v1-W3jhIDSeGW5VyC0ck7zVlvnmWfWWWG9kCiclcwpDTBapqST_diD11Y6ZGNn-_aEfN7LblP8s2AuwyZkh9NkZoxLHphkiguphazop__Qh7ikuR5XKZCMQ9fuBNmecinmnHActilsTHoaGAw7D4adB8POg-HgQd35eFBe7Ab9y8bzxyvwYQ8ERHwZdx1Az_v2L40piqY</recordid><startdate>20140301</startdate><enddate>20140301</enddate><creator>Willemen, T.</creator><creator>Van Deun, D.</creator><creator>Verhaert, V.</creator><creator>Vandekerckhove, M.</creator><creator>Exadaktylos, V.</creator><creator>Verbraecken, J.</creator><creator>Van Huffel, S.</creator><creator>Haex, B.</creator><creator>Vander Sloten, Jos</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20140301</creationdate><title>An Evaluation of Cardiorespiratory and Movement Features With Respect to Sleep-Stage Classification</title><author>Willemen, T. ; Van Deun, D. ; Verhaert, V. ; Vandekerckhove, M. ; Exadaktylos, V. ; Verbraecken, J. ; Van Huffel, S. ; Haex, B. ; Vander Sloten, Jos</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c440t-d8b2d80498cc9239bcd1d1bcb4bd45e4cb51c8900fb185c57f70d9b5ce1f6b73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Adult</topic><topic>Biomedical signal processing</topic><topic>Classification</topic><topic>data analysis</topic><topic>Electrocardiography</topic><topic>Feature extraction</topic><topic>Heart rate</topic><topic>Heart Rate - physiology</topic><topic>Humans</topic><topic>Medical Informatics Applications</topic><topic>medical information systems</topic><topic>Movement - physiology</topic><topic>Polysomnography - methods</topic><topic>Respiration</topic><topic>Robustness</topic><topic>Signal Processing, Computer-Assisted</topic><topic>Sleep</topic><topic>Sleep apnea</topic><topic>sleep research</topic><topic>supervised learning</topic><topic>Support Vector Machine</topic><topic>Support vector machines</topic><topic>Training</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Willemen, T.</creatorcontrib><creatorcontrib>Van Deun, D.</creatorcontrib><creatorcontrib>Verhaert, V.</creatorcontrib><creatorcontrib>Vandekerckhove, M.</creatorcontrib><creatorcontrib>Exadaktylos, V.</creatorcontrib><creatorcontrib>Verbraecken, J.</creatorcontrib><creatorcontrib>Van Huffel, S.</creatorcontrib><creatorcontrib>Haex, B.</creatorcontrib><creatorcontrib>Vander Sloten, Jos</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE journal of biomedical and health informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Willemen, T.</au><au>Van Deun, D.</au><au>Verhaert, V.</au><au>Vandekerckhove, M.</au><au>Exadaktylos, V.</au><au>Verbraecken, J.</au><au>Van Huffel, S.</au><au>Haex, B.</au><au>Vander Sloten, Jos</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Evaluation of Cardiorespiratory and Movement Features With Respect to Sleep-Stage Classification</atitle><jtitle>IEEE journal of biomedical and health informatics</jtitle><stitle>JBHI</stitle><addtitle>IEEE J Biomed Health Inform</addtitle><date>2014-03-01</date><risdate>2014</risdate><volume>18</volume><issue>2</issue><spage>661</spage><epage>669</epage><pages>661-669</pages><issn>2168-2194</issn><eissn>2168-2208</eissn><coden>IJBHA9</coden><abstract>Polysomnography (PSG) is considered the gold standard to assess sleep accurately, but it can be expensive, time-consuming, and uncomfortable, specifically in long-term sleep studies. Actigraphy, on the other hand, is both cheap and user-friendly, but depending on the application lacks detail and accuracy. Our aim was to evaluate cardiorespiratory and movement signals in discriminating between wake, rapid-eye-movement (REM), light (N1N2), and deep (N3) sleep. The dataset comprised 85 nights of PSG from a healthy population. Starting from a total of 750 characteristic variables (features), problem-specific subsets of 40 features were forwardly selected using the combination of a wrapper method (Cohen's kappa statistic on radial basis function (RBF)-kernel support vector machine (SVM) classifier) and filter method (minimum redundancy maximum relevance criterion on mutual information). Final classification was performed using an RBF-kernel SVM. Non-subject-specific wake versus sleep classification resulted in a Cohen's kappa value of 0.695, while REM versus NREM resulted in 0.558 and N3 versus N1N2 in 0.553. The broad pool of initial features gave insight in which features discriminated best between the different classes. The classification results demonstrate the possibility of making long-term sleep monitoring more widely available.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>24058031</pmid><doi>10.1109/JBHI.2013.2276083</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2168-2194 |
ispartof | IEEE journal of biomedical and health informatics, 2014-03, Vol.18 (2), p.661-669 |
issn | 2168-2194 2168-2208 |
language | eng |
recordid | cdi_crossref_primary_10_1109_JBHI_2013_2276083 |
source | IEEE Electronic Library (IEL) |
subjects | Adult Biomedical signal processing Classification data analysis Electrocardiography Feature extraction Heart rate Heart Rate - physiology Humans Medical Informatics Applications medical information systems Movement - physiology Polysomnography - methods Respiration Robustness Signal Processing, Computer-Assisted Sleep Sleep apnea sleep research supervised learning Support Vector Machine Support vector machines Training Young Adult |
title | An Evaluation of Cardiorespiratory and Movement Features With Respect to Sleep-Stage Classification |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T17%3A50%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Evaluation%20of%20Cardiorespiratory%20and%20Movement%20Features%20With%20Respect%20to%20Sleep-Stage%20Classification&rft.jtitle=IEEE%20journal%20of%20biomedical%20and%20health%20informatics&rft.au=Willemen,%20T.&rft.date=2014-03-01&rft.volume=18&rft.issue=2&rft.spage=661&rft.epage=669&rft.pages=661-669&rft.issn=2168-2194&rft.eissn=2168-2208&rft.coden=IJBHA9&rft_id=info:doi/10.1109/JBHI.2013.2276083&rft_dat=%3Cproquest_RIE%3E1518245945%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1505120637&rft_id=info:pmid/24058031&rft_ieee_id=6600727&rfr_iscdi=true |