Battery Full Life Cycle Management and Health Prognosis Based on Cloud Service and Broad Learning

Dear editor, This letter presents battery full life cycle management and health prognosis based on cloud service and broad learning. Specifically, a cloud-based framework for battery full life cycle management is presented. Then, the broad learning method is proposed for battery state-of-health (SOH...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE/CAA journal of automatica sinica 2022-08, Vol.9 (8), p.1540-1542
Hauptverfasser: Wang, Yujie, Li, Kaiquan, Chen, Zonghai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1542
container_issue 8
container_start_page 1540
container_title IEEE/CAA journal of automatica sinica
container_volume 9
creator Wang, Yujie
Li, Kaiquan
Chen, Zonghai
description Dear editor, This letter presents battery full life cycle management and health prognosis based on cloud service and broad learning. Specifically, a cloud-based framework for battery full life cycle management is presented. Then, the broad learning method is proposed for battery state-of-health (SOH) prediction. The features of charging data including the constant current time, constant voltage time, and the total charging time are selected as the input characteristics of the network to estimate SOH. Moreover, the empirical mode decomposition is carried out on the initial data to restore the most essential attenuation trajectory of battery capacity. Experimental results show that the proposed method can provide more accurate battery SOH prediction than several state-of-the-art methods.
doi_str_mv 10.1109/JAS.2022.105779
format Article
fullrecord <record><control><sourceid>wanfang_jour_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JAS_2022_105779</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9849150</ieee_id><wanfj_id>zdhxb_ywb202208019</wanfj_id><sourcerecordid>zdhxb_ywb202208019</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-93111532db4d86f82af06b1e96bb00b9cb8844a7be28cfd44506e6f40bffdae13</originalsourceid><addsrcrecordid>eNpFkEFPwjAYhhejiQQ5e_DSxJsJ0HZdtx6BiGgwmqDnpl2_wsjosB0i_nqHM3j63sPzvl_yRNE1wQNCsBg-jRYDiikdEJykqTiLOjSmoi9oys5PmfPLqBfCGmNMaJJywTqRGqu6Bn9A011ZonlhAU0OeQnoWTm1hA24Giln0AxUWa_Qq6-WrgpFQGMVwKDKoUlZ7QxagP8scvhlx75SBs1BeVe45VV0YVUZoPd3u9H79P5tMuvPXx4eJ6N5P6ciqfsiJoQkMTWamYzbjCqLuSYguNYYa5HrLGNMpRpollvDWII5cMuwttYoIHE3umt398pZ5ZZyXe28az7Kb7P60vKw10dDOMNENPBtC2999bGDUP_TlIs04XFMeUMNWyr3VQgerNz6YqP8QRIsj95l410eV2XrvWnctI0CAE60yJggCY5_ABg-fTI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2697563326</pqid></control><display><type>article</type><title>Battery Full Life Cycle Management and Health Prognosis Based on Cloud Service and Broad Learning</title><source>IEEE Electronic Library (IEL)</source><creator>Wang, Yujie ; Li, Kaiquan ; Chen, Zonghai</creator><creatorcontrib>Wang, Yujie ; Li, Kaiquan ; Chen, Zonghai</creatorcontrib><description>Dear editor, This letter presents battery full life cycle management and health prognosis based on cloud service and broad learning. Specifically, a cloud-based framework for battery full life cycle management is presented. Then, the broad learning method is proposed for battery state-of-health (SOH) prediction. The features of charging data including the constant current time, constant voltage time, and the total charging time are selected as the input characteristics of the network to estimate SOH. Moreover, the empirical mode decomposition is carried out on the initial data to restore the most essential attenuation trajectory of battery capacity. Experimental results show that the proposed method can provide more accurate battery SOH prediction than several state-of-the-art methods.</description><identifier>ISSN: 2329-9266</identifier><identifier>EISSN: 2329-9274</identifier><identifier>DOI: 10.1109/JAS.2022.105779</identifier><identifier>CODEN: IJASJC</identifier><language>eng</language><publisher>Piscataway: Chinese Association of Automation (CAA)</publisher><subject>Battery cycles ; Charging ; Learning ; Prognosis</subject><ispartof>IEEE/CAA journal of automatica sinica, 2022-08, Vol.9 (8), p.1540-1542</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-93111532db4d86f82af06b1e96bb00b9cb8844a7be28cfd44506e6f40bffdae13</citedby><cites>FETCH-LOGICAL-c295t-93111532db4d86f82af06b1e96bb00b9cb8844a7be28cfd44506e6f40bffdae13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.wanfangdata.com.cn/images/PeriodicalImages/zdhxb-ywb/zdhxb-ywb.jpg</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9849150$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9849150$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wang, Yujie</creatorcontrib><creatorcontrib>Li, Kaiquan</creatorcontrib><creatorcontrib>Chen, Zonghai</creatorcontrib><title>Battery Full Life Cycle Management and Health Prognosis Based on Cloud Service and Broad Learning</title><title>IEEE/CAA journal of automatica sinica</title><addtitle>JAS</addtitle><description>Dear editor, This letter presents battery full life cycle management and health prognosis based on cloud service and broad learning. Specifically, a cloud-based framework for battery full life cycle management is presented. Then, the broad learning method is proposed for battery state-of-health (SOH) prediction. The features of charging data including the constant current time, constant voltage time, and the total charging time are selected as the input characteristics of the network to estimate SOH. Moreover, the empirical mode decomposition is carried out on the initial data to restore the most essential attenuation trajectory of battery capacity. Experimental results show that the proposed method can provide more accurate battery SOH prediction than several state-of-the-art methods.</description><subject>Battery cycles</subject><subject>Charging</subject><subject>Learning</subject><subject>Prognosis</subject><issn>2329-9266</issn><issn>2329-9274</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpFkEFPwjAYhhejiQQ5e_DSxJsJ0HZdtx6BiGgwmqDnpl2_wsjosB0i_nqHM3j63sPzvl_yRNE1wQNCsBg-jRYDiikdEJykqTiLOjSmoi9oys5PmfPLqBfCGmNMaJJywTqRGqu6Bn9A011ZonlhAU0OeQnoWTm1hA24Giln0AxUWa_Qq6-WrgpFQGMVwKDKoUlZ7QxagP8scvhlx75SBs1BeVe45VV0YVUZoPd3u9H79P5tMuvPXx4eJ6N5P6ciqfsiJoQkMTWamYzbjCqLuSYguNYYa5HrLGNMpRpollvDWII5cMuwttYoIHE3umt398pZ5ZZyXe28az7Kb7P60vKw10dDOMNENPBtC2999bGDUP_TlIs04XFMeUMNWyr3VQgerNz6YqP8QRIsj95l410eV2XrvWnctI0CAE60yJggCY5_ABg-fTI</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Wang, Yujie</creator><creator>Li, Kaiquan</creator><creator>Chen, Zonghai</creator><general>Chinese Association of Automation (CAA)</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><general>Department of Automation,University of Science and Technology of China,Hefei 230027,China</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>20220801</creationdate><title>Battery Full Life Cycle Management and Health Prognosis Based on Cloud Service and Broad Learning</title><author>Wang, Yujie ; Li, Kaiquan ; Chen, Zonghai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-93111532db4d86f82af06b1e96bb00b9cb8844a7be28cfd44506e6f40bffdae13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Battery cycles</topic><topic>Charging</topic><topic>Learning</topic><topic>Prognosis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Yujie</creatorcontrib><creatorcontrib>Li, Kaiquan</creatorcontrib><creatorcontrib>Chen, Zonghai</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>IEEE/CAA journal of automatica sinica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wang, Yujie</au><au>Li, Kaiquan</au><au>Chen, Zonghai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Battery Full Life Cycle Management and Health Prognosis Based on Cloud Service and Broad Learning</atitle><jtitle>IEEE/CAA journal of automatica sinica</jtitle><stitle>JAS</stitle><date>2022-08-01</date><risdate>2022</risdate><volume>9</volume><issue>8</issue><spage>1540</spage><epage>1542</epage><pages>1540-1542</pages><issn>2329-9266</issn><eissn>2329-9274</eissn><coden>IJASJC</coden><abstract>Dear editor, This letter presents battery full life cycle management and health prognosis based on cloud service and broad learning. Specifically, a cloud-based framework for battery full life cycle management is presented. Then, the broad learning method is proposed for battery state-of-health (SOH) prediction. The features of charging data including the constant current time, constant voltage time, and the total charging time are selected as the input characteristics of the network to estimate SOH. Moreover, the empirical mode decomposition is carried out on the initial data to restore the most essential attenuation trajectory of battery capacity. Experimental results show that the proposed method can provide more accurate battery SOH prediction than several state-of-the-art methods.</abstract><cop>Piscataway</cop><pub>Chinese Association of Automation (CAA)</pub><doi>10.1109/JAS.2022.105779</doi><tpages>3</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2329-9266
ispartof IEEE/CAA journal of automatica sinica, 2022-08, Vol.9 (8), p.1540-1542
issn 2329-9266
2329-9274
language eng
recordid cdi_crossref_primary_10_1109_JAS_2022_105779
source IEEE Electronic Library (IEL)
subjects Battery cycles
Charging
Learning
Prognosis
title Battery Full Life Cycle Management and Health Prognosis Based on Cloud Service and Broad Learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T11%3A01%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Battery%20Full%20Life%20Cycle%20Management%20and%20Health%20Prognosis%20Based%20on%20Cloud%20Service%20and%20Broad%20Learning&rft.jtitle=IEEE/CAA%20journal%20of%20automatica%20sinica&rft.au=Wang,%20Yujie&rft.date=2022-08-01&rft.volume=9&rft.issue=8&rft.spage=1540&rft.epage=1542&rft.pages=1540-1542&rft.issn=2329-9266&rft.eissn=2329-9274&rft.coden=IJASJC&rft_id=info:doi/10.1109/JAS.2022.105779&rft_dat=%3Cwanfang_jour_RIE%3Ezdhxb_ywb202208019%3C/wanfang_jour_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2697563326&rft_id=info:pmid/&rft_ieee_id=9849150&rft_wanfj_id=zdhxb_ywb202208019&rfr_iscdi=true