Empirical Mode Decomposition for Analysis and Filtering of Speech Signals

Speech signals typically have a stationary interval of 20-30 ms. Due to this, most speech processing techniques split speech signals into segments shorter than the stationary interval to take advantage of the piecewise stationary property of speech. However, there is no way to guarantee that the seg...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Canadian journal of electrical and computer engineering 2021, Vol.44 (3), p.343-349
Hauptverfasser: Usman, Mohammed, Zubair, Mohammed, Hussein, Hany S., Wajid, Mohd, Farrag, Mohammed, Ali, Syed Jaffar, Shiblee, Mohammad, Habeeb, Mohammed Sayeeduddin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 349
container_issue 3
container_start_page 343
container_title Canadian journal of electrical and computer engineering
container_volume 44
creator Usman, Mohammed
Zubair, Mohammed
Hussein, Hany S.
Wajid, Mohd
Farrag, Mohammed
Ali, Syed Jaffar
Shiblee, Mohammad
Habeeb, Mohammed Sayeeduddin
description Speech signals typically have a stationary interval of 20-30 ms. Due to this, most speech processing techniques split speech signals into segments shorter than the stationary interval to take advantage of the piecewise stationary property of speech. However, there is no way to guarantee that the segments coincide with the stationary timescales inherent in the signal. Furthermore, how do we analyze speech signals over lengths longer than the stationary time scales? Second, there is evidence of the presence of nonlinearities in speech data from the published literature. In this article, the analysis of speech signals, without restriction to stationary time scales, using empirical mode decomposition (EMD) is presented in which the signal is broken down into components called intrinsic mode functions. EMD is especially suited for nonstationary and nonlinear data. The utility of this method, its effects, and opportunities for further research in the context of speech signals are presented.
doi_str_mv 10.1109/ICJECE.2021.3075373
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ICJECE_2021_3075373</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9487495</ieee_id><sourcerecordid>2555727765</sourcerecordid><originalsourceid>FETCH-LOGICAL-c212t-f7577587da87a78d68912ab928a467183197cc8fd9502ad20efd1a9151a804a73</originalsourceid><addsrcrecordid>eNpNkD1PwzAURS0EEqXwC7pYYk7xR5xnj1VIoaiIoTBbJnaKqzYOdjr035MqCDHdN9xz9XQQmlEyp5Soh1X5UpXVnBFG55yA4MAv0IQVKs8oSH75775GNyntCOGSiHyCVtWh89HXZo9fg3X40dXh0IXkex9a3ISIF63Zn5JP2LQWL_2-d9G3WxwavOmcq7_wxm-HSrpFV80Q7u43p-hjWb2Xz9n67WlVLtZZzSjrswYEgJBgjQQD0hZSUWY-FZMmL4BKThXUtWysEoQZy4hrLDWKCmokyQ3wKbofd7sYvo8u9XoXjvH8gWZCCGAAhRhafGzVMaQUXaO76A8mnjQl-uxMj8702Zn-dTZQs5Hyzrk_QuUSciX4D4BPZto</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2555727765</pqid></control><display><type>article</type><title>Empirical Mode Decomposition for Analysis and Filtering of Speech Signals</title><source>IEEE Electronic Library Online</source><creator>Usman, Mohammed ; Zubair, Mohammed ; Hussein, Hany S. ; Wajid, Mohd ; Farrag, Mohammed ; Ali, Syed Jaffar ; Shiblee, Mohammad ; Habeeb, Mohammed Sayeeduddin</creator><creatorcontrib>Usman, Mohammed ; Zubair, Mohammed ; Hussein, Hany S. ; Wajid, Mohd ; Farrag, Mohammed ; Ali, Syed Jaffar ; Shiblee, Mohammad ; Habeeb, Mohammed Sayeeduddin</creatorcontrib><description>Speech signals typically have a stationary interval of 20-30 ms. Due to this, most speech processing techniques split speech signals into segments shorter than the stationary interval to take advantage of the piecewise stationary property of speech. However, there is no way to guarantee that the segments coincide with the stationary timescales inherent in the signal. Furthermore, how do we analyze speech signals over lengths longer than the stationary time scales? Second, there is evidence of the presence of nonlinearities in speech data from the published literature. In this article, the analysis of speech signals, without restriction to stationary time scales, using empirical mode decomposition (EMD) is presented in which the signal is broken down into components called intrinsic mode functions. EMD is especially suited for nonstationary and nonlinear data. The utility of this method, its effects, and opportunities for further research in the context of speech signals are presented.</description><identifier>ISSN: 2694-1783</identifier><identifier>ISSN: 0840-8688</identifier><identifier>EISSN: 2694-1783</identifier><identifier>DOI: 10.1109/ICJECE.2021.3075373</identifier><identifier>CODEN: ICJEAP</identifier><language>eng</language><publisher>Montreal: IEEE</publisher><subject>Empirical analysis ; Empirical mode decomposition ; Empirical mode decomposition (EMD) ; Heart rate ; Image reconstruction ; intrinsic mode functions (IMFs) ; nonlinear signals ; Nonlinearity ; nonstationary signals ; Segments ; Signal processing ; Speech ; speech analysis ; Speech enhancement ; Speech processing ; Time ; Wind speed</subject><ispartof>Canadian journal of electrical and computer engineering, 2021, Vol.44 (3), p.343-349</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c212t-f7577587da87a78d68912ab928a467183197cc8fd9502ad20efd1a9151a804a73</citedby><cites>FETCH-LOGICAL-c212t-f7577587da87a78d68912ab928a467183197cc8fd9502ad20efd1a9151a804a73</cites><orcidid>0000-0002-6932-6354 ; 0000-0002-3604-4633 ; 0000-0002-4857-8835 ; 0000-0002-9596-5205 ; 0000-0002-3352-472X ; 0000-0002-4929-0702 ; 0000-0002-9565-0027</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9487495$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,4024,27923,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9487495$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Usman, Mohammed</creatorcontrib><creatorcontrib>Zubair, Mohammed</creatorcontrib><creatorcontrib>Hussein, Hany S.</creatorcontrib><creatorcontrib>Wajid, Mohd</creatorcontrib><creatorcontrib>Farrag, Mohammed</creatorcontrib><creatorcontrib>Ali, Syed Jaffar</creatorcontrib><creatorcontrib>Shiblee, Mohammad</creatorcontrib><creatorcontrib>Habeeb, Mohammed Sayeeduddin</creatorcontrib><title>Empirical Mode Decomposition for Analysis and Filtering of Speech Signals</title><title>Canadian journal of electrical and computer engineering</title><addtitle>ICJECE</addtitle><description>Speech signals typically have a stationary interval of 20-30 ms. Due to this, most speech processing techniques split speech signals into segments shorter than the stationary interval to take advantage of the piecewise stationary property of speech. However, there is no way to guarantee that the segments coincide with the stationary timescales inherent in the signal. Furthermore, how do we analyze speech signals over lengths longer than the stationary time scales? Second, there is evidence of the presence of nonlinearities in speech data from the published literature. In this article, the analysis of speech signals, without restriction to stationary time scales, using empirical mode decomposition (EMD) is presented in which the signal is broken down into components called intrinsic mode functions. EMD is especially suited for nonstationary and nonlinear data. The utility of this method, its effects, and opportunities for further research in the context of speech signals are presented.</description><subject>Empirical analysis</subject><subject>Empirical mode decomposition</subject><subject>Empirical mode decomposition (EMD)</subject><subject>Heart rate</subject><subject>Image reconstruction</subject><subject>intrinsic mode functions (IMFs)</subject><subject>nonlinear signals</subject><subject>Nonlinearity</subject><subject>nonstationary signals</subject><subject>Segments</subject><subject>Signal processing</subject><subject>Speech</subject><subject>speech analysis</subject><subject>Speech enhancement</subject><subject>Speech processing</subject><subject>Time</subject><subject>Wind speed</subject><issn>2694-1783</issn><issn>0840-8688</issn><issn>2694-1783</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkD1PwzAURS0EEqXwC7pYYk7xR5xnj1VIoaiIoTBbJnaKqzYOdjr035MqCDHdN9xz9XQQmlEyp5Soh1X5UpXVnBFG55yA4MAv0IQVKs8oSH75775GNyntCOGSiHyCVtWh89HXZo9fg3X40dXh0IXkex9a3ISIF63Zn5JP2LQWL_2-d9G3WxwavOmcq7_wxm-HSrpFV80Q7u43p-hjWb2Xz9n67WlVLtZZzSjrswYEgJBgjQQD0hZSUWY-FZMmL4BKThXUtWysEoQZy4hrLDWKCmokyQ3wKbofd7sYvo8u9XoXjvH8gWZCCGAAhRhafGzVMaQUXaO76A8mnjQl-uxMj8702Zn-dTZQs5Hyzrk_QuUSciX4D4BPZto</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Usman, Mohammed</creator><creator>Zubair, Mohammed</creator><creator>Hussein, Hany S.</creator><creator>Wajid, Mohd</creator><creator>Farrag, Mohammed</creator><creator>Ali, Syed Jaffar</creator><creator>Shiblee, Mohammad</creator><creator>Habeeb, Mohammed Sayeeduddin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-6932-6354</orcidid><orcidid>https://orcid.org/0000-0002-3604-4633</orcidid><orcidid>https://orcid.org/0000-0002-4857-8835</orcidid><orcidid>https://orcid.org/0000-0002-9596-5205</orcidid><orcidid>https://orcid.org/0000-0002-3352-472X</orcidid><orcidid>https://orcid.org/0000-0002-4929-0702</orcidid><orcidid>https://orcid.org/0000-0002-9565-0027</orcidid></search><sort><creationdate>2021</creationdate><title>Empirical Mode Decomposition for Analysis and Filtering of Speech Signals</title><author>Usman, Mohammed ; Zubair, Mohammed ; Hussein, Hany S. ; Wajid, Mohd ; Farrag, Mohammed ; Ali, Syed Jaffar ; Shiblee, Mohammad ; Habeeb, Mohammed Sayeeduddin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c212t-f7577587da87a78d68912ab928a467183197cc8fd9502ad20efd1a9151a804a73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Empirical analysis</topic><topic>Empirical mode decomposition</topic><topic>Empirical mode decomposition (EMD)</topic><topic>Heart rate</topic><topic>Image reconstruction</topic><topic>intrinsic mode functions (IMFs)</topic><topic>nonlinear signals</topic><topic>Nonlinearity</topic><topic>nonstationary signals</topic><topic>Segments</topic><topic>Signal processing</topic><topic>Speech</topic><topic>speech analysis</topic><topic>Speech enhancement</topic><topic>Speech processing</topic><topic>Time</topic><topic>Wind speed</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Usman, Mohammed</creatorcontrib><creatorcontrib>Zubair, Mohammed</creatorcontrib><creatorcontrib>Hussein, Hany S.</creatorcontrib><creatorcontrib>Wajid, Mohd</creatorcontrib><creatorcontrib>Farrag, Mohammed</creatorcontrib><creatorcontrib>Ali, Syed Jaffar</creatorcontrib><creatorcontrib>Shiblee, Mohammad</creatorcontrib><creatorcontrib>Habeeb, Mohammed Sayeeduddin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library Online</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Canadian journal of electrical and computer engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Usman, Mohammed</au><au>Zubair, Mohammed</au><au>Hussein, Hany S.</au><au>Wajid, Mohd</au><au>Farrag, Mohammed</au><au>Ali, Syed Jaffar</au><au>Shiblee, Mohammad</au><au>Habeeb, Mohammed Sayeeduddin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Empirical Mode Decomposition for Analysis and Filtering of Speech Signals</atitle><jtitle>Canadian journal of electrical and computer engineering</jtitle><stitle>ICJECE</stitle><date>2021</date><risdate>2021</risdate><volume>44</volume><issue>3</issue><spage>343</spage><epage>349</epage><pages>343-349</pages><issn>2694-1783</issn><issn>0840-8688</issn><eissn>2694-1783</eissn><coden>ICJEAP</coden><abstract>Speech signals typically have a stationary interval of 20-30 ms. Due to this, most speech processing techniques split speech signals into segments shorter than the stationary interval to take advantage of the piecewise stationary property of speech. However, there is no way to guarantee that the segments coincide with the stationary timescales inherent in the signal. Furthermore, how do we analyze speech signals over lengths longer than the stationary time scales? Second, there is evidence of the presence of nonlinearities in speech data from the published literature. In this article, the analysis of speech signals, without restriction to stationary time scales, using empirical mode decomposition (EMD) is presented in which the signal is broken down into components called intrinsic mode functions. EMD is especially suited for nonstationary and nonlinear data. The utility of this method, its effects, and opportunities for further research in the context of speech signals are presented.</abstract><cop>Montreal</cop><pub>IEEE</pub><doi>10.1109/ICJECE.2021.3075373</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-6932-6354</orcidid><orcidid>https://orcid.org/0000-0002-3604-4633</orcidid><orcidid>https://orcid.org/0000-0002-4857-8835</orcidid><orcidid>https://orcid.org/0000-0002-9596-5205</orcidid><orcidid>https://orcid.org/0000-0002-3352-472X</orcidid><orcidid>https://orcid.org/0000-0002-4929-0702</orcidid><orcidid>https://orcid.org/0000-0002-9565-0027</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2694-1783
ispartof Canadian journal of electrical and computer engineering, 2021, Vol.44 (3), p.343-349
issn 2694-1783
0840-8688
2694-1783
language eng
recordid cdi_crossref_primary_10_1109_ICJECE_2021_3075373
source IEEE Electronic Library Online
subjects Empirical analysis
Empirical mode decomposition
Empirical mode decomposition (EMD)
Heart rate
Image reconstruction
intrinsic mode functions (IMFs)
nonlinear signals
Nonlinearity
nonstationary signals
Segments
Signal processing
Speech
speech analysis
Speech enhancement
Speech processing
Time
Wind speed
title Empirical Mode Decomposition for Analysis and Filtering of Speech Signals
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T19%3A24%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Empirical%20Mode%20Decomposition%20for%20Analysis%20and%20Filtering%20of%20Speech%20Signals&rft.jtitle=Canadian%20journal%20of%20electrical%20and%20computer%20engineering&rft.au=Usman,%20Mohammed&rft.date=2021&rft.volume=44&rft.issue=3&rft.spage=343&rft.epage=349&rft.pages=343-349&rft.issn=2694-1783&rft.eissn=2694-1783&rft.coden=ICJEAP&rft_id=info:doi/10.1109/ICJECE.2021.3075373&rft_dat=%3Cproquest_RIE%3E2555727765%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2555727765&rft_id=info:pmid/&rft_ieee_id=9487495&rfr_iscdi=true