Formulas for calculating temperature distribution in transformer cores and other electric apparatus of rectangular cross section
THIS paper comprises solution of a very general problem in the mathematical theory of heat; application of it to effect formulas for the temperature distribution T, the maximum temperature T m , and the average temperature T a in transformer cores; and indication of its use with reference to other e...
Gespeichert in:
Veröffentlicht in: | Electrical engineering (New York, N.Y.) N.Y.), 1945-04, Vol.64 (4), p.190-194 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 194 |
---|---|
container_issue | 4 |
container_start_page | 190 |
container_title | Electrical engineering (New York, N.Y.) |
container_volume | 64 |
creator | Higgins, Thomas James |
description | THIS paper comprises solution of a very general problem in the mathematical theory of heat; application of it to effect formulas for the temperature distribution T, the maximum temperature T m , and the average temperature T a in transformer cores; and indication of its use with reference to other electric apparatus of rectangular cross section and of such general shape that the temperature distribution is essentially two dimensional. As theory indicates and experiment confirms that this condition is often fulfilled in practice, these formulas ought to be of considerable interest to designers of such equipment. For, commonly, the maximum electric loading of an electric device is determined by the permissible maximum or hot-spot temperature in it. Hence knowledge of this maximum temperature and of the temperature distribution in general is desired by the designer faced with making up new designs, improving operating performance of existing designs, or deciding upon maximum, yet safe, overload limits for apparatus already in service. |
doi_str_mv | 10.1109/EE.1945.6440972 |
format | Article |
fullrecord | <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_EE_1945_6440972</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6440972</ieee_id><sourcerecordid>10_1109_EE_1945_6440972</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1062-ccb50446d8a434cec64cafc7a596f5248456bd8421166130ff0061d29e9328d63</originalsourceid><addsrcrecordid>eNo9kD9PwzAQxS0EEqUwM7D4C6Q9O44Tj6hKAakSC8yR65yLUf7JdgY2PjouLUynd3e_d7pHyD2DFWOg1nW9YkoUKykEqJJfkAXPS5mVFYhLsgBQRaaYKq_JTQifADmISizI93b0_dzpQO3oqdGdSSK64UAj9hN6HWePtHUherefoxsH6gYavR5CAnpMzOgxUD20dIwfSWOHJi0bqqdJH_lAR0t9aurhkMwT4ccQaEidZHdLrqzuAt6d65K8b-u3zXO2e3162TzuMsNA8syYfQFCyLbSIhcGjRRGW1PqQklb8PRLIfdtJThjUrIcrAWQrOUKVc6rVuZLsj75_l73aJvJu177r4ZBcwywqevmGGBzDjARDyfCIeL_9t_0B46Db3U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Formulas for calculating temperature distribution in transformer cores and other electric apparatus of rectangular cross section</title><source>IEEE Electronic Library (IEL)</source><creator>Higgins, Thomas James</creator><creatorcontrib>Higgins, Thomas James</creatorcontrib><description>THIS paper comprises solution of a very general problem in the mathematical theory of heat; application of it to effect formulas for the temperature distribution T, the maximum temperature T m , and the average temperature T a in transformer cores; and indication of its use with reference to other electric apparatus of rectangular cross section and of such general shape that the temperature distribution is essentially two dimensional. As theory indicates and experiment confirms that this condition is often fulfilled in practice, these formulas ought to be of considerable interest to designers of such equipment. For, commonly, the maximum electric loading of an electric device is determined by the permissible maximum or hot-spot temperature in it. Hence knowledge of this maximum temperature and of the temperature distribution in general is desired by the designer faced with making up new designs, improving operating performance of existing designs, or deciding upon maximum, yet safe, overload limits for apparatus already in service.</description><identifier>ISSN: 0095-9197</identifier><identifier>EISSN: 2376-7804</identifier><identifier>DOI: 10.1109/EE.1945.6440972</identifier><language>eng</language><publisher>American Institute of Electrical Engineers</publisher><subject>Coils ; Conductivity ; Equations ; Heating ; Mathematical model ; Temperature distribution ; Thermal resistance</subject><ispartof>Electrical engineering (New York, N.Y.), 1945-04, Vol.64 (4), p.190-194</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1062-ccb50446d8a434cec64cafc7a596f5248456bd8421166130ff0061d29e9328d63</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6440972$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6440972$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Higgins, Thomas James</creatorcontrib><title>Formulas for calculating temperature distribution in transformer cores and other electric apparatus of rectangular cross section</title><title>Electrical engineering (New York, N.Y.)</title><addtitle>EE</addtitle><description>THIS paper comprises solution of a very general problem in the mathematical theory of heat; application of it to effect formulas for the temperature distribution T, the maximum temperature T m , and the average temperature T a in transformer cores; and indication of its use with reference to other electric apparatus of rectangular cross section and of such general shape that the temperature distribution is essentially two dimensional. As theory indicates and experiment confirms that this condition is often fulfilled in practice, these formulas ought to be of considerable interest to designers of such equipment. For, commonly, the maximum electric loading of an electric device is determined by the permissible maximum or hot-spot temperature in it. Hence knowledge of this maximum temperature and of the temperature distribution in general is desired by the designer faced with making up new designs, improving operating performance of existing designs, or deciding upon maximum, yet safe, overload limits for apparatus already in service.</description><subject>Coils</subject><subject>Conductivity</subject><subject>Equations</subject><subject>Heating</subject><subject>Mathematical model</subject><subject>Temperature distribution</subject><subject>Thermal resistance</subject><issn>0095-9197</issn><issn>2376-7804</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1945</creationdate><recordtype>article</recordtype><recordid>eNo9kD9PwzAQxS0EEqUwM7D4C6Q9O44Tj6hKAakSC8yR65yLUf7JdgY2PjouLUynd3e_d7pHyD2DFWOg1nW9YkoUKykEqJJfkAXPS5mVFYhLsgBQRaaYKq_JTQifADmISizI93b0_dzpQO3oqdGdSSK64UAj9hN6HWePtHUherefoxsH6gYavR5CAnpMzOgxUD20dIwfSWOHJi0bqqdJH_lAR0t9aurhkMwT4ccQaEidZHdLrqzuAt6d65K8b-u3zXO2e3162TzuMsNA8syYfQFCyLbSIhcGjRRGW1PqQklb8PRLIfdtJThjUrIcrAWQrOUKVc6rVuZLsj75_l73aJvJu177r4ZBcwywqevmGGBzDjARDyfCIeL_9t_0B46Db3U</recordid><startdate>194504</startdate><enddate>194504</enddate><creator>Higgins, Thomas James</creator><general>American Institute of Electrical Engineers</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>194504</creationdate><title>Formulas for calculating temperature distribution in transformer cores and other electric apparatus of rectangular cross section</title><author>Higgins, Thomas James</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1062-ccb50446d8a434cec64cafc7a596f5248456bd8421166130ff0061d29e9328d63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1945</creationdate><topic>Coils</topic><topic>Conductivity</topic><topic>Equations</topic><topic>Heating</topic><topic>Mathematical model</topic><topic>Temperature distribution</topic><topic>Thermal resistance</topic><toplevel>online_resources</toplevel><creatorcontrib>Higgins, Thomas James</creatorcontrib><collection>CrossRef</collection><jtitle>Electrical engineering (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Higgins, Thomas James</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Formulas for calculating temperature distribution in transformer cores and other electric apparatus of rectangular cross section</atitle><jtitle>Electrical engineering (New York, N.Y.)</jtitle><stitle>EE</stitle><date>1945-04</date><risdate>1945</risdate><volume>64</volume><issue>4</issue><spage>190</spage><epage>194</epage><pages>190-194</pages><issn>0095-9197</issn><eissn>2376-7804</eissn><abstract>THIS paper comprises solution of a very general problem in the mathematical theory of heat; application of it to effect formulas for the temperature distribution T, the maximum temperature T m , and the average temperature T a in transformer cores; and indication of its use with reference to other electric apparatus of rectangular cross section and of such general shape that the temperature distribution is essentially two dimensional. As theory indicates and experiment confirms that this condition is often fulfilled in practice, these formulas ought to be of considerable interest to designers of such equipment. For, commonly, the maximum electric loading of an electric device is determined by the permissible maximum or hot-spot temperature in it. Hence knowledge of this maximum temperature and of the temperature distribution in general is desired by the designer faced with making up new designs, improving operating performance of existing designs, or deciding upon maximum, yet safe, overload limits for apparatus already in service.</abstract><pub>American Institute of Electrical Engineers</pub><doi>10.1109/EE.1945.6440972</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0095-9197 |
ispartof | Electrical engineering (New York, N.Y.), 1945-04, Vol.64 (4), p.190-194 |
issn | 0095-9197 2376-7804 |
language | eng |
recordid | cdi_crossref_primary_10_1109_EE_1945_6440972 |
source | IEEE Electronic Library (IEL) |
subjects | Coils Conductivity Equations Heating Mathematical model Temperature distribution Thermal resistance |
title | Formulas for calculating temperature distribution in transformer cores and other electric apparatus of rectangular cross section |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T17%3A36%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Formulas%20for%20calculating%20temperature%20distribution%20in%20transformer%20cores%20and%20other%20electric%20apparatus%20of%20rectangular%20cross%20section&rft.jtitle=Electrical%20engineering%20(New%20York,%20N.Y.)&rft.au=Higgins,%20Thomas%20James&rft.date=1945-04&rft.volume=64&rft.issue=4&rft.spage=190&rft.epage=194&rft.pages=190-194&rft.issn=0095-9197&rft.eissn=2376-7804&rft_id=info:doi/10.1109/EE.1945.6440972&rft_dat=%3Ccrossref_RIE%3E10_1109_EE_1945_6440972%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6440972&rfr_iscdi=true |