Machine Learning-Driven Optimization for Solution Space Reduction in the Quadratic Multiple Knapsack Problem

The quadratic multiple knapsack problem (QMKP) is a well-studied problem in operations research. This problem involves selecting a subset of items that maximizes the linear and quadratic profit without exceeding a set of capacities for each knapsack. While its solution using metaheuristics has been...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2025, Vol.13, p.10638-10652
Hauptverfasser: Yanez-Oyarce, Diego, Contreras-Bolton, Carlos, Troncoso-Espinosa, Fredy, Rey, Carlos
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10652
container_issue
container_start_page 10638
container_title IEEE access
container_volume 13
creator Yanez-Oyarce, Diego
Contreras-Bolton, Carlos
Troncoso-Espinosa, Fredy
Rey, Carlos
description The quadratic multiple knapsack problem (QMKP) is a well-studied problem in operations research. This problem involves selecting a subset of items that maximizes the linear and quadratic profit without exceeding a set of capacities for each knapsack. While its solution using metaheuristics has been explored, exact approaches have recently been investigated. One way to improve the performance of these exact approaches is by reducing the solution space in different instances, considering the properties of the items in the context of QMKP. In this paper, machine learning (ML) models are employed to support an exact optimization solver by predicting the inclusion of items with a certain level of confidence and classifying them. This approach reduces the solution space for exact solvers, allowing them to tackle more manageable problems. The methodological process is detailed, in which ML models are generated and the best one is selected to be used as a preprocessing approach. Finally, we conduct comparison experiments, demonstrating that using a ML model is highly beneficial for reducing computing times and achieving rapid convergence.
doi_str_mv 10.1109/ACCESS.2025.3529317
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2025_3529317</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10839359</ieee_id><doaj_id>oai_doaj_org_article_ae95ec41b0864b2ea67d09a16e23694f</doaj_id><sourcerecordid>3158211186</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1596-1739bd4104108799e94b88f80a5b18718d0c804f1c0f08ea4c36073d842255073</originalsourceid><addsrcrecordid>eNpNUV1v1DAQjBBIVKW_AB4s8ZzDa8eO_VgdBSquKnDwbG2cTesjFwcnQYJfj3upUFcr7YdmZleaongNfAPA7bvL7fZqv98ILtRGKmEl1M-KMwHallJJ_fxJ_7K4mKYDz2HyStVnRX-D_j4MxHaEaQjDXfk-hd80sNtxDsfwF-cQB9bFxPaxX07DfkRP7Bu1iz_NYWDzPbGvC7Ypwz27Wfo5jD2xzwOOE_qf7EuKTU_HV8WLDvuJLh7refHjw9X37adyd_vxenu5Kz0oq0uopW3aCnhOU1tLtmqM6QxH1YCpwbTcG1514HnHDWHlpea1bE0lhFK5Oy-uV9024sGNKRwx_XERgzstYrpzmPKnPTkkq8hX0HCjq0YQ6rrlFkGTkNpWXdZ6u2qNKf5aaJrdIS5pyO87CcoIADA6o-SK8ilOU6Lu_1Xg7sElt7rkHlxyjy5l1puVFYjoCcNIK5WV_wAaSYzU</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3158211186</pqid></control><display><type>article</type><title>Machine Learning-Driven Optimization for Solution Space Reduction in the Quadratic Multiple Knapsack Problem</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Yanez-Oyarce, Diego ; Contreras-Bolton, Carlos ; Troncoso-Espinosa, Fredy ; Rey, Carlos</creator><creatorcontrib>Yanez-Oyarce, Diego ; Contreras-Bolton, Carlos ; Troncoso-Espinosa, Fredy ; Rey, Carlos</creatorcontrib><description>The quadratic multiple knapsack problem (QMKP) is a well-studied problem in operations research. This problem involves selecting a subset of items that maximizes the linear and quadratic profit without exceeding a set of capacities for each knapsack. While its solution using metaheuristics has been explored, exact approaches have recently been investigated. One way to improve the performance of these exact approaches is by reducing the solution space in different instances, considering the properties of the items in the context of QMKP. In this paper, machine learning (ML) models are employed to support an exact optimization solver by predicting the inclusion of items with a certain level of confidence and classifying them. This approach reduces the solution space for exact solvers, allowing them to tackle more manageable problems. The methodological process is detailed, in which ML models are generated and the best one is selected to be used as a preprocessing approach. Finally, we conduct comparison experiments, demonstrating that using a ML model is highly beneficial for reducing computing times and achieving rapid convergence.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2025.3529317</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Classification algorithms ; combinatorial optimization ; Correlation ; Genetic algorithms ; Heuristic algorithms ; Heuristic methods ; Knapsack problem ; Machine learning ; Mathematical models ; Metaheuristics ; Operations research ; Optimization ; Prediction algorithms ; quadratic multiple knapsack problem ; Solution space ; Solvers ; Support vector machines ; Synthetic data</subject><ispartof>IEEE access, 2025, Vol.13, p.10638-10652</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1596-1739bd4104108799e94b88f80a5b18718d0c804f1c0f08ea4c36073d842255073</cites><orcidid>0009-0004-6468-5632 ; 0000-0001-9549-4143 ; 0000-0002-9972-3123 ; 0009-0000-0884-7423</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10839359$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,4010,27610,27900,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Yanez-Oyarce, Diego</creatorcontrib><creatorcontrib>Contreras-Bolton, Carlos</creatorcontrib><creatorcontrib>Troncoso-Espinosa, Fredy</creatorcontrib><creatorcontrib>Rey, Carlos</creatorcontrib><title>Machine Learning-Driven Optimization for Solution Space Reduction in the Quadratic Multiple Knapsack Problem</title><title>IEEE access</title><addtitle>Access</addtitle><description>The quadratic multiple knapsack problem (QMKP) is a well-studied problem in operations research. This problem involves selecting a subset of items that maximizes the linear and quadratic profit without exceeding a set of capacities for each knapsack. While its solution using metaheuristics has been explored, exact approaches have recently been investigated. One way to improve the performance of these exact approaches is by reducing the solution space in different instances, considering the properties of the items in the context of QMKP. In this paper, machine learning (ML) models are employed to support an exact optimization solver by predicting the inclusion of items with a certain level of confidence and classifying them. This approach reduces the solution space for exact solvers, allowing them to tackle more manageable problems. The methodological process is detailed, in which ML models are generated and the best one is selected to be used as a preprocessing approach. Finally, we conduct comparison experiments, demonstrating that using a ML model is highly beneficial for reducing computing times and achieving rapid convergence.</description><subject>Classification algorithms</subject><subject>combinatorial optimization</subject><subject>Correlation</subject><subject>Genetic algorithms</subject><subject>Heuristic algorithms</subject><subject>Heuristic methods</subject><subject>Knapsack problem</subject><subject>Machine learning</subject><subject>Mathematical models</subject><subject>Metaheuristics</subject><subject>Operations research</subject><subject>Optimization</subject><subject>Prediction algorithms</subject><subject>quadratic multiple knapsack problem</subject><subject>Solution space</subject><subject>Solvers</subject><subject>Support vector machines</subject><subject>Synthetic data</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUV1v1DAQjBBIVKW_AB4s8ZzDa8eO_VgdBSquKnDwbG2cTesjFwcnQYJfj3upUFcr7YdmZleaongNfAPA7bvL7fZqv98ILtRGKmEl1M-KMwHallJJ_fxJ_7K4mKYDz2HyStVnRX-D_j4MxHaEaQjDXfk-hd80sNtxDsfwF-cQB9bFxPaxX07DfkRP7Bu1iz_NYWDzPbGvC7Ypwz27Wfo5jD2xzwOOE_qf7EuKTU_HV8WLDvuJLh7refHjw9X37adyd_vxenu5Kz0oq0uopW3aCnhOU1tLtmqM6QxH1YCpwbTcG1514HnHDWHlpea1bE0lhFK5Oy-uV9024sGNKRwx_XERgzstYrpzmPKnPTkkq8hX0HCjq0YQ6rrlFkGTkNpWXdZ6u2qNKf5aaJrdIS5pyO87CcoIADA6o-SK8ilOU6Lu_1Xg7sElt7rkHlxyjy5l1puVFYjoCcNIK5WV_wAaSYzU</recordid><startdate>2025</startdate><enddate>2025</enddate><creator>Yanez-Oyarce, Diego</creator><creator>Contreras-Bolton, Carlos</creator><creator>Troncoso-Espinosa, Fredy</creator><creator>Rey, Carlos</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0009-0004-6468-5632</orcidid><orcidid>https://orcid.org/0000-0001-9549-4143</orcidid><orcidid>https://orcid.org/0000-0002-9972-3123</orcidid><orcidid>https://orcid.org/0009-0000-0884-7423</orcidid></search><sort><creationdate>2025</creationdate><title>Machine Learning-Driven Optimization for Solution Space Reduction in the Quadratic Multiple Knapsack Problem</title><author>Yanez-Oyarce, Diego ; Contreras-Bolton, Carlos ; Troncoso-Espinosa, Fredy ; Rey, Carlos</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1596-1739bd4104108799e94b88f80a5b18718d0c804f1c0f08ea4c36073d842255073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Classification algorithms</topic><topic>combinatorial optimization</topic><topic>Correlation</topic><topic>Genetic algorithms</topic><topic>Heuristic algorithms</topic><topic>Heuristic methods</topic><topic>Knapsack problem</topic><topic>Machine learning</topic><topic>Mathematical models</topic><topic>Metaheuristics</topic><topic>Operations research</topic><topic>Optimization</topic><topic>Prediction algorithms</topic><topic>quadratic multiple knapsack problem</topic><topic>Solution space</topic><topic>Solvers</topic><topic>Support vector machines</topic><topic>Synthetic data</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yanez-Oyarce, Diego</creatorcontrib><creatorcontrib>Contreras-Bolton, Carlos</creatorcontrib><creatorcontrib>Troncoso-Espinosa, Fredy</creatorcontrib><creatorcontrib>Rey, Carlos</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yanez-Oyarce, Diego</au><au>Contreras-Bolton, Carlos</au><au>Troncoso-Espinosa, Fredy</au><au>Rey, Carlos</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Machine Learning-Driven Optimization for Solution Space Reduction in the Quadratic Multiple Knapsack Problem</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2025</date><risdate>2025</risdate><volume>13</volume><spage>10638</spage><epage>10652</epage><pages>10638-10652</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>The quadratic multiple knapsack problem (QMKP) is a well-studied problem in operations research. This problem involves selecting a subset of items that maximizes the linear and quadratic profit without exceeding a set of capacities for each knapsack. While its solution using metaheuristics has been explored, exact approaches have recently been investigated. One way to improve the performance of these exact approaches is by reducing the solution space in different instances, considering the properties of the items in the context of QMKP. In this paper, machine learning (ML) models are employed to support an exact optimization solver by predicting the inclusion of items with a certain level of confidence and classifying them. This approach reduces the solution space for exact solvers, allowing them to tackle more manageable problems. The methodological process is detailed, in which ML models are generated and the best one is selected to be used as a preprocessing approach. Finally, we conduct comparison experiments, demonstrating that using a ML model is highly beneficial for reducing computing times and achieving rapid convergence.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2025.3529317</doi><tpages>15</tpages><orcidid>https://orcid.org/0009-0004-6468-5632</orcidid><orcidid>https://orcid.org/0000-0001-9549-4143</orcidid><orcidid>https://orcid.org/0000-0002-9972-3123</orcidid><orcidid>https://orcid.org/0009-0000-0884-7423</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2025, Vol.13, p.10638-10652
issn 2169-3536
2169-3536
language eng
recordid cdi_crossref_primary_10_1109_ACCESS_2025_3529317
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects Classification algorithms
combinatorial optimization
Correlation
Genetic algorithms
Heuristic algorithms
Heuristic methods
Knapsack problem
Machine learning
Mathematical models
Metaheuristics
Operations research
Optimization
Prediction algorithms
quadratic multiple knapsack problem
Solution space
Solvers
Support vector machines
Synthetic data
title Machine Learning-Driven Optimization for Solution Space Reduction in the Quadratic Multiple Knapsack Problem
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T01%3A05%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machine%20Learning-Driven%20Optimization%20for%20Solution%20Space%20Reduction%20in%20the%20Quadratic%20Multiple%20Knapsack%20Problem&rft.jtitle=IEEE%20access&rft.au=Yanez-Oyarce,%20Diego&rft.date=2025&rft.volume=13&rft.spage=10638&rft.epage=10652&rft.pages=10638-10652&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2025.3529317&rft_dat=%3Cproquest_cross%3E3158211186%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3158211186&rft_id=info:pmid/&rft_ieee_id=10839359&rft_doaj_id=oai_doaj_org_article_ae95ec41b0864b2ea67d09a16e23694f&rfr_iscdi=true