Machine Learning-Driven Optimization for Solution Space Reduction in the Quadratic Multiple Knapsack Problem
The quadratic multiple knapsack problem (QMKP) is a well-studied problem in operations research. This problem involves selecting a subset of items that maximizes the linear and quadratic profit without exceeding a set of capacities for each knapsack. While its solution using metaheuristics has been...
Gespeichert in:
Veröffentlicht in: | IEEE access 2025, Vol.13, p.10638-10652 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10652 |
---|---|
container_issue | |
container_start_page | 10638 |
container_title | IEEE access |
container_volume | 13 |
creator | Yanez-Oyarce, Diego Contreras-Bolton, Carlos Troncoso-Espinosa, Fredy Rey, Carlos |
description | The quadratic multiple knapsack problem (QMKP) is a well-studied problem in operations research. This problem involves selecting a subset of items that maximizes the linear and quadratic profit without exceeding a set of capacities for each knapsack. While its solution using metaheuristics has been explored, exact approaches have recently been investigated. One way to improve the performance of these exact approaches is by reducing the solution space in different instances, considering the properties of the items in the context of QMKP. In this paper, machine learning (ML) models are employed to support an exact optimization solver by predicting the inclusion of items with a certain level of confidence and classifying them. This approach reduces the solution space for exact solvers, allowing them to tackle more manageable problems. The methodological process is detailed, in which ML models are generated and the best one is selected to be used as a preprocessing approach. Finally, we conduct comparison experiments, demonstrating that using a ML model is highly beneficial for reducing computing times and achieving rapid convergence. |
doi_str_mv | 10.1109/ACCESS.2025.3529317 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2025_3529317</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10839359</ieee_id><doaj_id>oai_doaj_org_article_ae95ec41b0864b2ea67d09a16e23694f</doaj_id><sourcerecordid>3158211186</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1596-1739bd4104108799e94b88f80a5b18718d0c804f1c0f08ea4c36073d842255073</originalsourceid><addsrcrecordid>eNpNUV1v1DAQjBBIVKW_AB4s8ZzDa8eO_VgdBSquKnDwbG2cTesjFwcnQYJfj3upUFcr7YdmZleaongNfAPA7bvL7fZqv98ILtRGKmEl1M-KMwHallJJ_fxJ_7K4mKYDz2HyStVnRX-D_j4MxHaEaQjDXfk-hd80sNtxDsfwF-cQB9bFxPaxX07DfkRP7Bu1iz_NYWDzPbGvC7Ypwz27Wfo5jD2xzwOOE_qf7EuKTU_HV8WLDvuJLh7refHjw9X37adyd_vxenu5Kz0oq0uopW3aCnhOU1tLtmqM6QxH1YCpwbTcG1514HnHDWHlpea1bE0lhFK5Oy-uV9024sGNKRwx_XERgzstYrpzmPKnPTkkq8hX0HCjq0YQ6rrlFkGTkNpWXdZ6u2qNKf5aaJrdIS5pyO87CcoIADA6o-SK8ilOU6Lu_1Xg7sElt7rkHlxyjy5l1puVFYjoCcNIK5WV_wAaSYzU</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3158211186</pqid></control><display><type>article</type><title>Machine Learning-Driven Optimization for Solution Space Reduction in the Quadratic Multiple Knapsack Problem</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Yanez-Oyarce, Diego ; Contreras-Bolton, Carlos ; Troncoso-Espinosa, Fredy ; Rey, Carlos</creator><creatorcontrib>Yanez-Oyarce, Diego ; Contreras-Bolton, Carlos ; Troncoso-Espinosa, Fredy ; Rey, Carlos</creatorcontrib><description>The quadratic multiple knapsack problem (QMKP) is a well-studied problem in operations research. This problem involves selecting a subset of items that maximizes the linear and quadratic profit without exceeding a set of capacities for each knapsack. While its solution using metaheuristics has been explored, exact approaches have recently been investigated. One way to improve the performance of these exact approaches is by reducing the solution space in different instances, considering the properties of the items in the context of QMKP. In this paper, machine learning (ML) models are employed to support an exact optimization solver by predicting the inclusion of items with a certain level of confidence and classifying them. This approach reduces the solution space for exact solvers, allowing them to tackle more manageable problems. The methodological process is detailed, in which ML models are generated and the best one is selected to be used as a preprocessing approach. Finally, we conduct comparison experiments, demonstrating that using a ML model is highly beneficial for reducing computing times and achieving rapid convergence.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2025.3529317</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Classification algorithms ; combinatorial optimization ; Correlation ; Genetic algorithms ; Heuristic algorithms ; Heuristic methods ; Knapsack problem ; Machine learning ; Mathematical models ; Metaheuristics ; Operations research ; Optimization ; Prediction algorithms ; quadratic multiple knapsack problem ; Solution space ; Solvers ; Support vector machines ; Synthetic data</subject><ispartof>IEEE access, 2025, Vol.13, p.10638-10652</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1596-1739bd4104108799e94b88f80a5b18718d0c804f1c0f08ea4c36073d842255073</cites><orcidid>0009-0004-6468-5632 ; 0000-0001-9549-4143 ; 0000-0002-9972-3123 ; 0009-0000-0884-7423</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10839359$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,4010,27610,27900,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Yanez-Oyarce, Diego</creatorcontrib><creatorcontrib>Contreras-Bolton, Carlos</creatorcontrib><creatorcontrib>Troncoso-Espinosa, Fredy</creatorcontrib><creatorcontrib>Rey, Carlos</creatorcontrib><title>Machine Learning-Driven Optimization for Solution Space Reduction in the Quadratic Multiple Knapsack Problem</title><title>IEEE access</title><addtitle>Access</addtitle><description>The quadratic multiple knapsack problem (QMKP) is a well-studied problem in operations research. This problem involves selecting a subset of items that maximizes the linear and quadratic profit without exceeding a set of capacities for each knapsack. While its solution using metaheuristics has been explored, exact approaches have recently been investigated. One way to improve the performance of these exact approaches is by reducing the solution space in different instances, considering the properties of the items in the context of QMKP. In this paper, machine learning (ML) models are employed to support an exact optimization solver by predicting the inclusion of items with a certain level of confidence and classifying them. This approach reduces the solution space for exact solvers, allowing them to tackle more manageable problems. The methodological process is detailed, in which ML models are generated and the best one is selected to be used as a preprocessing approach. Finally, we conduct comparison experiments, demonstrating that using a ML model is highly beneficial for reducing computing times and achieving rapid convergence.</description><subject>Classification algorithms</subject><subject>combinatorial optimization</subject><subject>Correlation</subject><subject>Genetic algorithms</subject><subject>Heuristic algorithms</subject><subject>Heuristic methods</subject><subject>Knapsack problem</subject><subject>Machine learning</subject><subject>Mathematical models</subject><subject>Metaheuristics</subject><subject>Operations research</subject><subject>Optimization</subject><subject>Prediction algorithms</subject><subject>quadratic multiple knapsack problem</subject><subject>Solution space</subject><subject>Solvers</subject><subject>Support vector machines</subject><subject>Synthetic data</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUV1v1DAQjBBIVKW_AB4s8ZzDa8eO_VgdBSquKnDwbG2cTesjFwcnQYJfj3upUFcr7YdmZleaongNfAPA7bvL7fZqv98ILtRGKmEl1M-KMwHallJJ_fxJ_7K4mKYDz2HyStVnRX-D_j4MxHaEaQjDXfk-hd80sNtxDsfwF-cQB9bFxPaxX07DfkRP7Bu1iz_NYWDzPbGvC7Ypwz27Wfo5jD2xzwOOE_qf7EuKTU_HV8WLDvuJLh7refHjw9X37adyd_vxenu5Kz0oq0uopW3aCnhOU1tLtmqM6QxH1YCpwbTcG1514HnHDWHlpea1bE0lhFK5Oy-uV9024sGNKRwx_XERgzstYrpzmPKnPTkkq8hX0HCjq0YQ6rrlFkGTkNpWXdZ6u2qNKf5aaJrdIS5pyO87CcoIADA6o-SK8ilOU6Lu_1Xg7sElt7rkHlxyjy5l1puVFYjoCcNIK5WV_wAaSYzU</recordid><startdate>2025</startdate><enddate>2025</enddate><creator>Yanez-Oyarce, Diego</creator><creator>Contreras-Bolton, Carlos</creator><creator>Troncoso-Espinosa, Fredy</creator><creator>Rey, Carlos</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0009-0004-6468-5632</orcidid><orcidid>https://orcid.org/0000-0001-9549-4143</orcidid><orcidid>https://orcid.org/0000-0002-9972-3123</orcidid><orcidid>https://orcid.org/0009-0000-0884-7423</orcidid></search><sort><creationdate>2025</creationdate><title>Machine Learning-Driven Optimization for Solution Space Reduction in the Quadratic Multiple Knapsack Problem</title><author>Yanez-Oyarce, Diego ; Contreras-Bolton, Carlos ; Troncoso-Espinosa, Fredy ; Rey, Carlos</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1596-1739bd4104108799e94b88f80a5b18718d0c804f1c0f08ea4c36073d842255073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Classification algorithms</topic><topic>combinatorial optimization</topic><topic>Correlation</topic><topic>Genetic algorithms</topic><topic>Heuristic algorithms</topic><topic>Heuristic methods</topic><topic>Knapsack problem</topic><topic>Machine learning</topic><topic>Mathematical models</topic><topic>Metaheuristics</topic><topic>Operations research</topic><topic>Optimization</topic><topic>Prediction algorithms</topic><topic>quadratic multiple knapsack problem</topic><topic>Solution space</topic><topic>Solvers</topic><topic>Support vector machines</topic><topic>Synthetic data</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yanez-Oyarce, Diego</creatorcontrib><creatorcontrib>Contreras-Bolton, Carlos</creatorcontrib><creatorcontrib>Troncoso-Espinosa, Fredy</creatorcontrib><creatorcontrib>Rey, Carlos</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yanez-Oyarce, Diego</au><au>Contreras-Bolton, Carlos</au><au>Troncoso-Espinosa, Fredy</au><au>Rey, Carlos</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Machine Learning-Driven Optimization for Solution Space Reduction in the Quadratic Multiple Knapsack Problem</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2025</date><risdate>2025</risdate><volume>13</volume><spage>10638</spage><epage>10652</epage><pages>10638-10652</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>The quadratic multiple knapsack problem (QMKP) is a well-studied problem in operations research. This problem involves selecting a subset of items that maximizes the linear and quadratic profit without exceeding a set of capacities for each knapsack. While its solution using metaheuristics has been explored, exact approaches have recently been investigated. One way to improve the performance of these exact approaches is by reducing the solution space in different instances, considering the properties of the items in the context of QMKP. In this paper, machine learning (ML) models are employed to support an exact optimization solver by predicting the inclusion of items with a certain level of confidence and classifying them. This approach reduces the solution space for exact solvers, allowing them to tackle more manageable problems. The methodological process is detailed, in which ML models are generated and the best one is selected to be used as a preprocessing approach. Finally, we conduct comparison experiments, demonstrating that using a ML model is highly beneficial for reducing computing times and achieving rapid convergence.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2025.3529317</doi><tpages>15</tpages><orcidid>https://orcid.org/0009-0004-6468-5632</orcidid><orcidid>https://orcid.org/0000-0001-9549-4143</orcidid><orcidid>https://orcid.org/0000-0002-9972-3123</orcidid><orcidid>https://orcid.org/0009-0000-0884-7423</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2025, Vol.13, p.10638-10652 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_crossref_primary_10_1109_ACCESS_2025_3529317 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Classification algorithms combinatorial optimization Correlation Genetic algorithms Heuristic algorithms Heuristic methods Knapsack problem Machine learning Mathematical models Metaheuristics Operations research Optimization Prediction algorithms quadratic multiple knapsack problem Solution space Solvers Support vector machines Synthetic data |
title | Machine Learning-Driven Optimization for Solution Space Reduction in the Quadratic Multiple Knapsack Problem |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T01%3A05%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machine%20Learning-Driven%20Optimization%20for%20Solution%20Space%20Reduction%20in%20the%20Quadratic%20Multiple%20Knapsack%20Problem&rft.jtitle=IEEE%20access&rft.au=Yanez-Oyarce,%20Diego&rft.date=2025&rft.volume=13&rft.spage=10638&rft.epage=10652&rft.pages=10638-10652&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2025.3529317&rft_dat=%3Cproquest_cross%3E3158211186%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3158211186&rft_id=info:pmid/&rft_ieee_id=10839359&rft_doaj_id=oai_doaj_org_article_ae95ec41b0864b2ea67d09a16e23694f&rfr_iscdi=true |