The Prediction of Serum C-Reactive Protein Concentration Using Nonlinear Mixed-Effects Model

Serum C-reactive protein (CRP) is a useful biomarker reflecting the efficacy of clinical treatments for infectious and autoimmune diseases. Accurate prediction of the serum CRP concentration of a patient through accurate initial clinical evaluation must be preceded to promptly cope with inflammatory...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2025, Vol.13, p.6507-6514
Hauptverfasser: Joo Bae, Suk, Kim, Gyu Ri, Geu Chae, Sun, Kim, Yeesuk
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6514
container_issue
container_start_page 6507
container_title IEEE access
container_volume 13
creator Joo Bae, Suk
Kim, Gyu Ri
Geu Chae, Sun
Kim, Yeesuk
description Serum C-reactive protein (CRP) is a useful biomarker reflecting the efficacy of clinical treatments for infectious and autoimmune diseases. Accurate prediction of the serum CRP concentration of a patient through accurate initial clinical evaluation must be preceded to promptly cope with inflammatory diseases. In general, serum CRP concentration rises sharply right after hip surgery and then falls down at a certain period of time. Such patterns can be used as a meaningful indicator to estimate recovery tendency of individual patients. This study proposes a nonlinear mixed-effects (NME) model to describe nonlinear patterns of serum CRP concentration over time for patients suffering from hip arthroplasty through an observational study. The bi-exponential model with random effects is applied to predict temporal CRP concentrations in patients after hip surgery. Analytical results show that the proposed model accurately predicts serum CRP concentrations over time by effectively capturing individual variation in serum CRP concentrations through random effects. Based on the estimated model, we derive the distribution of normalized concentration times using the Monte Carlo (MC) simulation. The NME model will be expected to support future research on best practices for intraoperative and postoperative management of patients with hip surgery, based on various levels of predicted risks of infection.
doi_str_mv 10.1109/ACCESS.2024.3524471
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2024_3524471</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10818686</ieee_id><doaj_id>oai_doaj_org_article_7943d7bede03466b89f0fc5a93442de9</doaj_id><sourcerecordid>3155818107</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2041-c597a9005505ebc228cf88da7d3a5001e05cf05b133f4d3038dadb263234aa3f3</originalsourceid><addsrcrecordid>eNpNUV1rGzEQPEoLDal_Qftw0OdzV1rpPh7D4TYGuwmx_VYQOmmVyjinVHcOyb-v7Ash-7LL7MzswmTZVwZzxqD5cdW2i81mzoGLOUouRMU-ZBeclU2BEsuP7-bP2WwY9pCqTpCsLrI_27-U30ay3ow-9Hlw-Ybi8SFvizvSCXs6rcNIvs_b0Bvqx6jPzN3g-_v8d-gPvicd87V_JlssnCMzDvk6WDp8yT45fRho9tovs93Pxba9LlY3v5bt1aowHAQrjGwq3QBICZI6w3ltXF1bXVnUEoARSONAdgzRCYuAaWc7XiJHoTU6vMyWk68Neq8eo3_Q8UUF7dUZCPFe6Th6cyBVNQJt1ZElQFGWXd04cEbqBoXglprk9X3yeozh35GGUe3DMfbpfYVMyprVDKrEwollYhiGSO7tKgN1SkVNqahTKuo1laT6Nqk8Eb1TJNOyLvE_CmeHiw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3155818107</pqid></control><display><type>article</type><title>The Prediction of Serum C-Reactive Protein Concentration Using Nonlinear Mixed-Effects Model</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Joo Bae, Suk ; Kim, Gyu Ri ; Geu Chae, Sun ; Kim, Yeesuk</creator><creatorcontrib>Joo Bae, Suk ; Kim, Gyu Ri ; Geu Chae, Sun ; Kim, Yeesuk</creatorcontrib><description>Serum C-reactive protein (CRP) is a useful biomarker reflecting the efficacy of clinical treatments for infectious and autoimmune diseases. Accurate prediction of the serum CRP concentration of a patient through accurate initial clinical evaluation must be preceded to promptly cope with inflammatory diseases. In general, serum CRP concentration rises sharply right after hip surgery and then falls down at a certain period of time. Such patterns can be used as a meaningful indicator to estimate recovery tendency of individual patients. This study proposes a nonlinear mixed-effects (NME) model to describe nonlinear patterns of serum CRP concentration over time for patients suffering from hip arthroplasty through an observational study. The bi-exponential model with random effects is applied to predict temporal CRP concentrations in patients after hip surgery. Analytical results show that the proposed model accurately predicts serum CRP concentrations over time by effectively capturing individual variation in serum CRP concentrations through random effects. Based on the estimated model, we derive the distribution of normalized concentration times using the Monte Carlo (MC) simulation. The NME model will be expected to support future research on best practices for intraoperative and postoperative management of patients with hip surgery, based on various levels of predicted risks of infection.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2024.3524471</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Analysis of variance ; Analytical models ; Autoimmune diseases ; Best practice ; Bi-exponential model ; Biomarkers ; compartment theory ; Data models ; Hip ; Light rail systems ; likelihood ratio test ; Monte Carlo (MC) simulation ; Monte Carlo methods ; Predictive models ; Proteins ; Surgery ; Vectors</subject><ispartof>IEEE access, 2025, Vol.13, p.6507-6514</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2041-c597a9005505ebc228cf88da7d3a5001e05cf05b133f4d3038dadb263234aa3f3</cites><orcidid>0000-0002-9938-7406</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10818686$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,4010,27610,27900,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Joo Bae, Suk</creatorcontrib><creatorcontrib>Kim, Gyu Ri</creatorcontrib><creatorcontrib>Geu Chae, Sun</creatorcontrib><creatorcontrib>Kim, Yeesuk</creatorcontrib><title>The Prediction of Serum C-Reactive Protein Concentration Using Nonlinear Mixed-Effects Model</title><title>IEEE access</title><addtitle>Access</addtitle><description>Serum C-reactive protein (CRP) is a useful biomarker reflecting the efficacy of clinical treatments for infectious and autoimmune diseases. Accurate prediction of the serum CRP concentration of a patient through accurate initial clinical evaluation must be preceded to promptly cope with inflammatory diseases. In general, serum CRP concentration rises sharply right after hip surgery and then falls down at a certain period of time. Such patterns can be used as a meaningful indicator to estimate recovery tendency of individual patients. This study proposes a nonlinear mixed-effects (NME) model to describe nonlinear patterns of serum CRP concentration over time for patients suffering from hip arthroplasty through an observational study. The bi-exponential model with random effects is applied to predict temporal CRP concentrations in patients after hip surgery. Analytical results show that the proposed model accurately predicts serum CRP concentrations over time by effectively capturing individual variation in serum CRP concentrations through random effects. Based on the estimated model, we derive the distribution of normalized concentration times using the Monte Carlo (MC) simulation. The NME model will be expected to support future research on best practices for intraoperative and postoperative management of patients with hip surgery, based on various levels of predicted risks of infection.</description><subject>Analysis of variance</subject><subject>Analytical models</subject><subject>Autoimmune diseases</subject><subject>Best practice</subject><subject>Bi-exponential model</subject><subject>Biomarkers</subject><subject>compartment theory</subject><subject>Data models</subject><subject>Hip</subject><subject>Light rail systems</subject><subject>likelihood ratio test</subject><subject>Monte Carlo (MC) simulation</subject><subject>Monte Carlo methods</subject><subject>Predictive models</subject><subject>Proteins</subject><subject>Surgery</subject><subject>Vectors</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUV1rGzEQPEoLDal_Qftw0OdzV1rpPh7D4TYGuwmx_VYQOmmVyjinVHcOyb-v7Ash-7LL7MzswmTZVwZzxqD5cdW2i81mzoGLOUouRMU-ZBeclU2BEsuP7-bP2WwY9pCqTpCsLrI_27-U30ay3ow-9Hlw-Ybi8SFvizvSCXs6rcNIvs_b0Bvqx6jPzN3g-_v8d-gPvicd87V_JlssnCMzDvk6WDp8yT45fRho9tovs93Pxba9LlY3v5bt1aowHAQrjGwq3QBICZI6w3ltXF1bXVnUEoARSONAdgzRCYuAaWc7XiJHoTU6vMyWk68Neq8eo3_Q8UUF7dUZCPFe6Th6cyBVNQJt1ZElQFGWXd04cEbqBoXglprk9X3yeozh35GGUe3DMfbpfYVMyprVDKrEwollYhiGSO7tKgN1SkVNqahTKuo1laT6Nqk8Eb1TJNOyLvE_CmeHiw</recordid><startdate>2025</startdate><enddate>2025</enddate><creator>Joo Bae, Suk</creator><creator>Kim, Gyu Ri</creator><creator>Geu Chae, Sun</creator><creator>Kim, Yeesuk</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9938-7406</orcidid></search><sort><creationdate>2025</creationdate><title>The Prediction of Serum C-Reactive Protein Concentration Using Nonlinear Mixed-Effects Model</title><author>Joo Bae, Suk ; Kim, Gyu Ri ; Geu Chae, Sun ; Kim, Yeesuk</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2041-c597a9005505ebc228cf88da7d3a5001e05cf05b133f4d3038dadb263234aa3f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Analysis of variance</topic><topic>Analytical models</topic><topic>Autoimmune diseases</topic><topic>Best practice</topic><topic>Bi-exponential model</topic><topic>Biomarkers</topic><topic>compartment theory</topic><topic>Data models</topic><topic>Hip</topic><topic>Light rail systems</topic><topic>likelihood ratio test</topic><topic>Monte Carlo (MC) simulation</topic><topic>Monte Carlo methods</topic><topic>Predictive models</topic><topic>Proteins</topic><topic>Surgery</topic><topic>Vectors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Joo Bae, Suk</creatorcontrib><creatorcontrib>Kim, Gyu Ri</creatorcontrib><creatorcontrib>Geu Chae, Sun</creatorcontrib><creatorcontrib>Kim, Yeesuk</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Joo Bae, Suk</au><au>Kim, Gyu Ri</au><au>Geu Chae, Sun</au><au>Kim, Yeesuk</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Prediction of Serum C-Reactive Protein Concentration Using Nonlinear Mixed-Effects Model</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2025</date><risdate>2025</risdate><volume>13</volume><spage>6507</spage><epage>6514</epage><pages>6507-6514</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Serum C-reactive protein (CRP) is a useful biomarker reflecting the efficacy of clinical treatments for infectious and autoimmune diseases. Accurate prediction of the serum CRP concentration of a patient through accurate initial clinical evaluation must be preceded to promptly cope with inflammatory diseases. In general, serum CRP concentration rises sharply right after hip surgery and then falls down at a certain period of time. Such patterns can be used as a meaningful indicator to estimate recovery tendency of individual patients. This study proposes a nonlinear mixed-effects (NME) model to describe nonlinear patterns of serum CRP concentration over time for patients suffering from hip arthroplasty through an observational study. The bi-exponential model with random effects is applied to predict temporal CRP concentrations in patients after hip surgery. Analytical results show that the proposed model accurately predicts serum CRP concentrations over time by effectively capturing individual variation in serum CRP concentrations through random effects. Based on the estimated model, we derive the distribution of normalized concentration times using the Monte Carlo (MC) simulation. The NME model will be expected to support future research on best practices for intraoperative and postoperative management of patients with hip surgery, based on various levels of predicted risks of infection.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2024.3524471</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-9938-7406</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2025, Vol.13, p.6507-6514
issn 2169-3536
2169-3536
language eng
recordid cdi_crossref_primary_10_1109_ACCESS_2024_3524471
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Analysis of variance
Analytical models
Autoimmune diseases
Best practice
Bi-exponential model
Biomarkers
compartment theory
Data models
Hip
Light rail systems
likelihood ratio test
Monte Carlo (MC) simulation
Monte Carlo methods
Predictive models
Proteins
Surgery
Vectors
title The Prediction of Serum C-Reactive Protein Concentration Using Nonlinear Mixed-Effects Model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T11%3A56%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Prediction%20of%20Serum%20C-Reactive%20Protein%20Concentration%20Using%20Nonlinear%20Mixed-Effects%20Model&rft.jtitle=IEEE%20access&rft.au=Joo%20Bae,%20Suk&rft.date=2025&rft.volume=13&rft.spage=6507&rft.epage=6514&rft.pages=6507-6514&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2024.3524471&rft_dat=%3Cproquest_cross%3E3155818107%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3155818107&rft_id=info:pmid/&rft_ieee_id=10818686&rft_doaj_id=oai_doaj_org_article_7943d7bede03466b89f0fc5a93442de9&rfr_iscdi=true