RED-Net: A Neural Network for 3D Thyroid Segmentation in Chest CT Using Residual and Dilated Convolutions for Measuring Thyroid Volume

Unlike the lungs or the heart, the thyroid gland is not a primary target in chest computed tomography (CT) scans and is relatively small; hence, it is difficult for radiologists to always clinically delineate it in chest CT to incidentally detect a goiter. We designed a residual and dilated convolut...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2025, Vol.13, p.3026-3037
Hauptverfasser: Kim, Min-Ji, Kim, Jin-A, Kim, Naae, Hwangbo, Yul, Jeon, Hyun Jeong, Lee, Dong-Hwa, Oh, Ji Eun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3037
container_issue
container_start_page 3026
container_title IEEE access
container_volume 13
creator Kim, Min-Ji
Kim, Jin-A
Kim, Naae
Hwangbo, Yul
Jeon, Hyun Jeong
Lee, Dong-Hwa
Oh, Ji Eun
description Unlike the lungs or the heart, the thyroid gland is not a primary target in chest computed tomography (CT) scans and is relatively small; hence, it is difficult for radiologists to always clinically delineate it in chest CT to incidentally detect a goiter. We designed a residual and dilated convolution neural network (RED-Net), which automatically measures thyroid volume by segmenting the thyroid gland in contrast-enhanced chest CT scans. Its fundamental structure comprises a residual downsampling and upsampling pathway, complemented by a parallel dilated convolution module. This combination allows the model to extract features at multiple scales and capture contextual information to effectively segment even tiny thyroid glands in the complex anatomical structures observed in chest CT scans. Additionally, we constructed training and validation sets comprising CT scans of 1,150 adults (aged \ge 19 years) who underwent chest CT scans at the National Cancer Center and included data of those without a history of thyroid nodules, C73 diagnosis, or thyroid surgery before scanning procedure. We evaluated the performance of our method on a test dataset (600 patients) comprising chest CT scans of individuals collected at Chungbuk National University Hospital using the same criteria. The results showed that it achieved state-of-the-art performance with a Dice similarity coefficient of 0.8901.
doi_str_mv 10.1109/ACCESS.2024.3523766
format Article
fullrecord <record><control><sourceid>doaj_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2024_3523766</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10817600</ieee_id><doaj_id>oai_doaj_org_article_964fe6f6e26747e58ac782cf059fe951</doaj_id><sourcerecordid>oai_doaj_org_article_964fe6f6e26747e58ac782cf059fe951</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1310-a7963c810bbe231d83b9267a6fee6cb74f3d5e605ca660b56cf809c7bde1132f3</originalsourceid><addsrcrecordid>eNpNkUtOwzAQhiMEEqj0BLDwBVLsOLYTdlVaHhIPqS1sLccZF5c0RnYK6gU4NwkBhDdjzcz3zeKPojOCJ4Tg_GJaFPPlcpLgJJ1QllDB-UF0khCex5RRfvjvfxyNQ9jg7mVdi4mT6HMxn8UP0F6iKXqAnVd1V9oP51-RcR7RGVq97L2zFVrCegtNq1rrGmQbVLxAaFGxQk_BNmu0gGCrXYerpkIzW6sWKlS45t3Vux4J3757UGHn-_1f7XM338JpdGRUHWD8U0fR09V8VdzEd4_Xt8X0LtaEEhwrkXOqM4LLEhJKqoyWecKF4gaA61KkhlYMOGZacY5LxrXJcK5FWQEhNDF0FN0O3sqpjXzzdqv8Xjpl5XfD-bVUvrW6Bpnz1AA3HLoDqQCWKS2yRBvMcgM5I52LDi7tXQgezJ-PYNknI4dkZJ-M_Emmo84HygLAPyIjgmNMvwAr54qS</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>RED-Net: A Neural Network for 3D Thyroid Segmentation in Chest CT Using Residual and Dilated Convolutions for Measuring Thyroid Volume</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>IEEE Xplore Open Access Journals</source><creator>Kim, Min-Ji ; Kim, Jin-A ; Kim, Naae ; Hwangbo, Yul ; Jeon, Hyun Jeong ; Lee, Dong-Hwa ; Oh, Ji Eun</creator><creatorcontrib>Kim, Min-Ji ; Kim, Jin-A ; Kim, Naae ; Hwangbo, Yul ; Jeon, Hyun Jeong ; Lee, Dong-Hwa ; Oh, Ji Eun</creatorcontrib><description>Unlike the lungs or the heart, the thyroid gland is not a primary target in chest computed tomography (CT) scans and is relatively small; hence, it is difficult for radiologists to always clinically delineate it in chest CT to incidentally detect a goiter. We designed a residual and dilated convolution neural network (RED-Net), which automatically measures thyroid volume by segmenting the thyroid gland in contrast-enhanced chest CT scans. Its fundamental structure comprises a residual downsampling and upsampling pathway, complemented by a parallel dilated convolution module. This combination allows the model to extract features at multiple scales and capture contextual information to effectively segment even tiny thyroid glands in the complex anatomical structures observed in chest CT scans. Additionally, we constructed training and validation sets comprising CT scans of 1,150 adults (aged &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;\ge 19 &lt;/tex-math&gt;&lt;/inline-formula&gt; years) who underwent chest CT scans at the National Cancer Center and included data of those without a history of thyroid nodules, C73 diagnosis, or thyroid surgery before scanning procedure. We evaluated the performance of our method on a test dataset (600 patients) comprising chest CT scans of individuals collected at Chungbuk National University Hospital using the same criteria. The results showed that it achieved state-of-the-art performance with a Dice similarity coefficient of 0.8901.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2024.3523766</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accuracy ; Cancer ; Chest CT scans ; Computed tomography ; dilated convolution ; Feature extraction ; goiter ; Image segmentation ; Lungs ; RED-Net ; residual blocks ; Three-dimensional displays ; Thyroid ; thyroid segmentation ; thyroid volume ; Training ; Volume measurement</subject><ispartof>IEEE access, 2025, Vol.13, p.3026-3037</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1310-a7963c810bbe231d83b9267a6fee6cb74f3d5e605ca660b56cf809c7bde1132f3</cites><orcidid>0009-0005-3289-0794 ; 0000-0002-1953-9845</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10817600$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,4010,27610,27900,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Kim, Min-Ji</creatorcontrib><creatorcontrib>Kim, Jin-A</creatorcontrib><creatorcontrib>Kim, Naae</creatorcontrib><creatorcontrib>Hwangbo, Yul</creatorcontrib><creatorcontrib>Jeon, Hyun Jeong</creatorcontrib><creatorcontrib>Lee, Dong-Hwa</creatorcontrib><creatorcontrib>Oh, Ji Eun</creatorcontrib><title>RED-Net: A Neural Network for 3D Thyroid Segmentation in Chest CT Using Residual and Dilated Convolutions for Measuring Thyroid Volume</title><title>IEEE access</title><addtitle>Access</addtitle><description>Unlike the lungs or the heart, the thyroid gland is not a primary target in chest computed tomography (CT) scans and is relatively small; hence, it is difficult for radiologists to always clinically delineate it in chest CT to incidentally detect a goiter. We designed a residual and dilated convolution neural network (RED-Net), which automatically measures thyroid volume by segmenting the thyroid gland in contrast-enhanced chest CT scans. Its fundamental structure comprises a residual downsampling and upsampling pathway, complemented by a parallel dilated convolution module. This combination allows the model to extract features at multiple scales and capture contextual information to effectively segment even tiny thyroid glands in the complex anatomical structures observed in chest CT scans. Additionally, we constructed training and validation sets comprising CT scans of 1,150 adults (aged &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;\ge 19 &lt;/tex-math&gt;&lt;/inline-formula&gt; years) who underwent chest CT scans at the National Cancer Center and included data of those without a history of thyroid nodules, C73 diagnosis, or thyroid surgery before scanning procedure. We evaluated the performance of our method on a test dataset (600 patients) comprising chest CT scans of individuals collected at Chungbuk National University Hospital using the same criteria. The results showed that it achieved state-of-the-art performance with a Dice similarity coefficient of 0.8901.</description><subject>Accuracy</subject><subject>Cancer</subject><subject>Chest CT scans</subject><subject>Computed tomography</subject><subject>dilated convolution</subject><subject>Feature extraction</subject><subject>goiter</subject><subject>Image segmentation</subject><subject>Lungs</subject><subject>RED-Net</subject><subject>residual blocks</subject><subject>Three-dimensional displays</subject><subject>Thyroid</subject><subject>thyroid segmentation</subject><subject>thyroid volume</subject><subject>Training</subject><subject>Volume measurement</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkUtOwzAQhiMEEqj0BLDwBVLsOLYTdlVaHhIPqS1sLccZF5c0RnYK6gU4NwkBhDdjzcz3zeKPojOCJ4Tg_GJaFPPlcpLgJJ1QllDB-UF0khCex5RRfvjvfxyNQ9jg7mVdi4mT6HMxn8UP0F6iKXqAnVd1V9oP51-RcR7RGVq97L2zFVrCegtNq1rrGmQbVLxAaFGxQk_BNmu0gGCrXYerpkIzW6sWKlS45t3Vux4J3757UGHn-_1f7XM338JpdGRUHWD8U0fR09V8VdzEd4_Xt8X0LtaEEhwrkXOqM4LLEhJKqoyWecKF4gaA61KkhlYMOGZacY5LxrXJcK5FWQEhNDF0FN0O3sqpjXzzdqv8Xjpl5XfD-bVUvrW6Bpnz1AA3HLoDqQCWKS2yRBvMcgM5I52LDi7tXQgezJ-PYNknI4dkZJ-M_Emmo84HygLAPyIjgmNMvwAr54qS</recordid><startdate>2025</startdate><enddate>2025</enddate><creator>Kim, Min-Ji</creator><creator>Kim, Jin-A</creator><creator>Kim, Naae</creator><creator>Hwangbo, Yul</creator><creator>Jeon, Hyun Jeong</creator><creator>Lee, Dong-Hwa</creator><creator>Oh, Ji Eun</creator><general>IEEE</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope><orcidid>https://orcid.org/0009-0005-3289-0794</orcidid><orcidid>https://orcid.org/0000-0002-1953-9845</orcidid></search><sort><creationdate>2025</creationdate><title>RED-Net: A Neural Network for 3D Thyroid Segmentation in Chest CT Using Residual and Dilated Convolutions for Measuring Thyroid Volume</title><author>Kim, Min-Ji ; Kim, Jin-A ; Kim, Naae ; Hwangbo, Yul ; Jeon, Hyun Jeong ; Lee, Dong-Hwa ; Oh, Ji Eun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1310-a7963c810bbe231d83b9267a6fee6cb74f3d5e605ca660b56cf809c7bde1132f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Accuracy</topic><topic>Cancer</topic><topic>Chest CT scans</topic><topic>Computed tomography</topic><topic>dilated convolution</topic><topic>Feature extraction</topic><topic>goiter</topic><topic>Image segmentation</topic><topic>Lungs</topic><topic>RED-Net</topic><topic>residual blocks</topic><topic>Three-dimensional displays</topic><topic>Thyroid</topic><topic>thyroid segmentation</topic><topic>thyroid volume</topic><topic>Training</topic><topic>Volume measurement</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Min-Ji</creatorcontrib><creatorcontrib>Kim, Jin-A</creatorcontrib><creatorcontrib>Kim, Naae</creatorcontrib><creatorcontrib>Hwangbo, Yul</creatorcontrib><creatorcontrib>Jeon, Hyun Jeong</creatorcontrib><creatorcontrib>Lee, Dong-Hwa</creatorcontrib><creatorcontrib>Oh, Ji Eun</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Min-Ji</au><au>Kim, Jin-A</au><au>Kim, Naae</au><au>Hwangbo, Yul</au><au>Jeon, Hyun Jeong</au><au>Lee, Dong-Hwa</au><au>Oh, Ji Eun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>RED-Net: A Neural Network for 3D Thyroid Segmentation in Chest CT Using Residual and Dilated Convolutions for Measuring Thyroid Volume</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2025</date><risdate>2025</risdate><volume>13</volume><spage>3026</spage><epage>3037</epage><pages>3026-3037</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Unlike the lungs or the heart, the thyroid gland is not a primary target in chest computed tomography (CT) scans and is relatively small; hence, it is difficult for radiologists to always clinically delineate it in chest CT to incidentally detect a goiter. We designed a residual and dilated convolution neural network (RED-Net), which automatically measures thyroid volume by segmenting the thyroid gland in contrast-enhanced chest CT scans. Its fundamental structure comprises a residual downsampling and upsampling pathway, complemented by a parallel dilated convolution module. This combination allows the model to extract features at multiple scales and capture contextual information to effectively segment even tiny thyroid glands in the complex anatomical structures observed in chest CT scans. Additionally, we constructed training and validation sets comprising CT scans of 1,150 adults (aged &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;\ge 19 &lt;/tex-math&gt;&lt;/inline-formula&gt; years) who underwent chest CT scans at the National Cancer Center and included data of those without a history of thyroid nodules, C73 diagnosis, or thyroid surgery before scanning procedure. We evaluated the performance of our method on a test dataset (600 patients) comprising chest CT scans of individuals collected at Chungbuk National University Hospital using the same criteria. The results showed that it achieved state-of-the-art performance with a Dice similarity coefficient of 0.8901.</abstract><pub>IEEE</pub><doi>10.1109/ACCESS.2024.3523766</doi><tpages>12</tpages><orcidid>https://orcid.org/0009-0005-3289-0794</orcidid><orcidid>https://orcid.org/0000-0002-1953-9845</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2025, Vol.13, p.3026-3037
issn 2169-3536
2169-3536
language eng
recordid cdi_crossref_primary_10_1109_ACCESS_2024_3523766
source DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; IEEE Xplore Open Access Journals
subjects Accuracy
Cancer
Chest CT scans
Computed tomography
dilated convolution
Feature extraction
goiter
Image segmentation
Lungs
RED-Net
residual blocks
Three-dimensional displays
Thyroid
thyroid segmentation
thyroid volume
Training
Volume measurement
title RED-Net: A Neural Network for 3D Thyroid Segmentation in Chest CT Using Residual and Dilated Convolutions for Measuring Thyroid Volume
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T22%3A03%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-doaj_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=RED-Net:%20A%20Neural%20Network%20for%203D%20Thyroid%20Segmentation%20in%20Chest%20CT%20Using%20Residual%20and%20Dilated%20Convolutions%20for%20Measuring%20Thyroid%20Volume&rft.jtitle=IEEE%20access&rft.au=Kim,%20Min-Ji&rft.date=2025&rft.volume=13&rft.spage=3026&rft.epage=3037&rft.pages=3026-3037&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2024.3523766&rft_dat=%3Cdoaj_cross%3Eoai_doaj_org_article_964fe6f6e26747e58ac782cf059fe951%3C/doaj_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10817600&rft_doaj_id=oai_doaj_org_article_964fe6f6e26747e58ac782cf059fe951&rfr_iscdi=true