RED-Net: A Neural Network for 3D Thyroid Segmentation in Chest CT Using Residual and Dilated Convolutions for Measuring Thyroid Volume
Unlike the lungs or the heart, the thyroid gland is not a primary target in chest computed tomography (CT) scans and is relatively small; hence, it is difficult for radiologists to always clinically delineate it in chest CT to incidentally detect a goiter. We designed a residual and dilated convolut...
Gespeichert in:
Veröffentlicht in: | IEEE access 2025, Vol.13, p.3026-3037 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3037 |
---|---|
container_issue | |
container_start_page | 3026 |
container_title | IEEE access |
container_volume | 13 |
creator | Kim, Min-Ji Kim, Jin-A Kim, Naae Hwangbo, Yul Jeon, Hyun Jeong Lee, Dong-Hwa Oh, Ji Eun |
description | Unlike the lungs or the heart, the thyroid gland is not a primary target in chest computed tomography (CT) scans and is relatively small; hence, it is difficult for radiologists to always clinically delineate it in chest CT to incidentally detect a goiter. We designed a residual and dilated convolution neural network (RED-Net), which automatically measures thyroid volume by segmenting the thyroid gland in contrast-enhanced chest CT scans. Its fundamental structure comprises a residual downsampling and upsampling pathway, complemented by a parallel dilated convolution module. This combination allows the model to extract features at multiple scales and capture contextual information to effectively segment even tiny thyroid glands in the complex anatomical structures observed in chest CT scans. Additionally, we constructed training and validation sets comprising CT scans of 1,150 adults (aged \ge 19 years) who underwent chest CT scans at the National Cancer Center and included data of those without a history of thyroid nodules, C73 diagnosis, or thyroid surgery before scanning procedure. We evaluated the performance of our method on a test dataset (600 patients) comprising chest CT scans of individuals collected at Chungbuk National University Hospital using the same criteria. The results showed that it achieved state-of-the-art performance with a Dice similarity coefficient of 0.8901. |
doi_str_mv | 10.1109/ACCESS.2024.3523766 |
format | Article |
fullrecord | <record><control><sourceid>doaj_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2024_3523766</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10817600</ieee_id><doaj_id>oai_doaj_org_article_964fe6f6e26747e58ac782cf059fe951</doaj_id><sourcerecordid>oai_doaj_org_article_964fe6f6e26747e58ac782cf059fe951</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1310-a7963c810bbe231d83b9267a6fee6cb74f3d5e605ca660b56cf809c7bde1132f3</originalsourceid><addsrcrecordid>eNpNkUtOwzAQhiMEEqj0BLDwBVLsOLYTdlVaHhIPqS1sLccZF5c0RnYK6gU4NwkBhDdjzcz3zeKPojOCJ4Tg_GJaFPPlcpLgJJ1QllDB-UF0khCex5RRfvjvfxyNQ9jg7mVdi4mT6HMxn8UP0F6iKXqAnVd1V9oP51-RcR7RGVq97L2zFVrCegtNq1rrGmQbVLxAaFGxQk_BNmu0gGCrXYerpkIzW6sWKlS45t3Vux4J3757UGHn-_1f7XM338JpdGRUHWD8U0fR09V8VdzEd4_Xt8X0LtaEEhwrkXOqM4LLEhJKqoyWecKF4gaA61KkhlYMOGZacY5LxrXJcK5FWQEhNDF0FN0O3sqpjXzzdqv8Xjpl5XfD-bVUvrW6Bpnz1AA3HLoDqQCWKS2yRBvMcgM5I52LDi7tXQgezJ-PYNknI4dkZJ-M_Emmo84HygLAPyIjgmNMvwAr54qS</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>RED-Net: A Neural Network for 3D Thyroid Segmentation in Chest CT Using Residual and Dilated Convolutions for Measuring Thyroid Volume</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>IEEE Xplore Open Access Journals</source><creator>Kim, Min-Ji ; Kim, Jin-A ; Kim, Naae ; Hwangbo, Yul ; Jeon, Hyun Jeong ; Lee, Dong-Hwa ; Oh, Ji Eun</creator><creatorcontrib>Kim, Min-Ji ; Kim, Jin-A ; Kim, Naae ; Hwangbo, Yul ; Jeon, Hyun Jeong ; Lee, Dong-Hwa ; Oh, Ji Eun</creatorcontrib><description>Unlike the lungs or the heart, the thyroid gland is not a primary target in chest computed tomography (CT) scans and is relatively small; hence, it is difficult for radiologists to always clinically delineate it in chest CT to incidentally detect a goiter. We designed a residual and dilated convolution neural network (RED-Net), which automatically measures thyroid volume by segmenting the thyroid gland in contrast-enhanced chest CT scans. Its fundamental structure comprises a residual downsampling and upsampling pathway, complemented by a parallel dilated convolution module. This combination allows the model to extract features at multiple scales and capture contextual information to effectively segment even tiny thyroid glands in the complex anatomical structures observed in chest CT scans. Additionally, we constructed training and validation sets comprising CT scans of 1,150 adults (aged <inline-formula> <tex-math notation="LaTeX">\ge 19 </tex-math></inline-formula> years) who underwent chest CT scans at the National Cancer Center and included data of those without a history of thyroid nodules, C73 diagnosis, or thyroid surgery before scanning procedure. We evaluated the performance of our method on a test dataset (600 patients) comprising chest CT scans of individuals collected at Chungbuk National University Hospital using the same criteria. The results showed that it achieved state-of-the-art performance with a Dice similarity coefficient of 0.8901.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2024.3523766</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accuracy ; Cancer ; Chest CT scans ; Computed tomography ; dilated convolution ; Feature extraction ; goiter ; Image segmentation ; Lungs ; RED-Net ; residual blocks ; Three-dimensional displays ; Thyroid ; thyroid segmentation ; thyroid volume ; Training ; Volume measurement</subject><ispartof>IEEE access, 2025, Vol.13, p.3026-3037</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1310-a7963c810bbe231d83b9267a6fee6cb74f3d5e605ca660b56cf809c7bde1132f3</cites><orcidid>0009-0005-3289-0794 ; 0000-0002-1953-9845</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10817600$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,4010,27610,27900,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Kim, Min-Ji</creatorcontrib><creatorcontrib>Kim, Jin-A</creatorcontrib><creatorcontrib>Kim, Naae</creatorcontrib><creatorcontrib>Hwangbo, Yul</creatorcontrib><creatorcontrib>Jeon, Hyun Jeong</creatorcontrib><creatorcontrib>Lee, Dong-Hwa</creatorcontrib><creatorcontrib>Oh, Ji Eun</creatorcontrib><title>RED-Net: A Neural Network for 3D Thyroid Segmentation in Chest CT Using Residual and Dilated Convolutions for Measuring Thyroid Volume</title><title>IEEE access</title><addtitle>Access</addtitle><description>Unlike the lungs or the heart, the thyroid gland is not a primary target in chest computed tomography (CT) scans and is relatively small; hence, it is difficult for radiologists to always clinically delineate it in chest CT to incidentally detect a goiter. We designed a residual and dilated convolution neural network (RED-Net), which automatically measures thyroid volume by segmenting the thyroid gland in contrast-enhanced chest CT scans. Its fundamental structure comprises a residual downsampling and upsampling pathway, complemented by a parallel dilated convolution module. This combination allows the model to extract features at multiple scales and capture contextual information to effectively segment even tiny thyroid glands in the complex anatomical structures observed in chest CT scans. Additionally, we constructed training and validation sets comprising CT scans of 1,150 adults (aged <inline-formula> <tex-math notation="LaTeX">\ge 19 </tex-math></inline-formula> years) who underwent chest CT scans at the National Cancer Center and included data of those without a history of thyroid nodules, C73 diagnosis, or thyroid surgery before scanning procedure. We evaluated the performance of our method on a test dataset (600 patients) comprising chest CT scans of individuals collected at Chungbuk National University Hospital using the same criteria. The results showed that it achieved state-of-the-art performance with a Dice similarity coefficient of 0.8901.</description><subject>Accuracy</subject><subject>Cancer</subject><subject>Chest CT scans</subject><subject>Computed tomography</subject><subject>dilated convolution</subject><subject>Feature extraction</subject><subject>goiter</subject><subject>Image segmentation</subject><subject>Lungs</subject><subject>RED-Net</subject><subject>residual blocks</subject><subject>Three-dimensional displays</subject><subject>Thyroid</subject><subject>thyroid segmentation</subject><subject>thyroid volume</subject><subject>Training</subject><subject>Volume measurement</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkUtOwzAQhiMEEqj0BLDwBVLsOLYTdlVaHhIPqS1sLccZF5c0RnYK6gU4NwkBhDdjzcz3zeKPojOCJ4Tg_GJaFPPlcpLgJJ1QllDB-UF0khCex5RRfvjvfxyNQ9jg7mVdi4mT6HMxn8UP0F6iKXqAnVd1V9oP51-RcR7RGVq97L2zFVrCegtNq1rrGmQbVLxAaFGxQk_BNmu0gGCrXYerpkIzW6sWKlS45t3Vux4J3757UGHn-_1f7XM338JpdGRUHWD8U0fR09V8VdzEd4_Xt8X0LtaEEhwrkXOqM4LLEhJKqoyWecKF4gaA61KkhlYMOGZacY5LxrXJcK5FWQEhNDF0FN0O3sqpjXzzdqv8Xjpl5XfD-bVUvrW6Bpnz1AA3HLoDqQCWKS2yRBvMcgM5I52LDi7tXQgezJ-PYNknI4dkZJ-M_Emmo84HygLAPyIjgmNMvwAr54qS</recordid><startdate>2025</startdate><enddate>2025</enddate><creator>Kim, Min-Ji</creator><creator>Kim, Jin-A</creator><creator>Kim, Naae</creator><creator>Hwangbo, Yul</creator><creator>Jeon, Hyun Jeong</creator><creator>Lee, Dong-Hwa</creator><creator>Oh, Ji Eun</creator><general>IEEE</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope><orcidid>https://orcid.org/0009-0005-3289-0794</orcidid><orcidid>https://orcid.org/0000-0002-1953-9845</orcidid></search><sort><creationdate>2025</creationdate><title>RED-Net: A Neural Network for 3D Thyroid Segmentation in Chest CT Using Residual and Dilated Convolutions for Measuring Thyroid Volume</title><author>Kim, Min-Ji ; Kim, Jin-A ; Kim, Naae ; Hwangbo, Yul ; Jeon, Hyun Jeong ; Lee, Dong-Hwa ; Oh, Ji Eun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1310-a7963c810bbe231d83b9267a6fee6cb74f3d5e605ca660b56cf809c7bde1132f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Accuracy</topic><topic>Cancer</topic><topic>Chest CT scans</topic><topic>Computed tomography</topic><topic>dilated convolution</topic><topic>Feature extraction</topic><topic>goiter</topic><topic>Image segmentation</topic><topic>Lungs</topic><topic>RED-Net</topic><topic>residual blocks</topic><topic>Three-dimensional displays</topic><topic>Thyroid</topic><topic>thyroid segmentation</topic><topic>thyroid volume</topic><topic>Training</topic><topic>Volume measurement</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Min-Ji</creatorcontrib><creatorcontrib>Kim, Jin-A</creatorcontrib><creatorcontrib>Kim, Naae</creatorcontrib><creatorcontrib>Hwangbo, Yul</creatorcontrib><creatorcontrib>Jeon, Hyun Jeong</creatorcontrib><creatorcontrib>Lee, Dong-Hwa</creatorcontrib><creatorcontrib>Oh, Ji Eun</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Min-Ji</au><au>Kim, Jin-A</au><au>Kim, Naae</au><au>Hwangbo, Yul</au><au>Jeon, Hyun Jeong</au><au>Lee, Dong-Hwa</au><au>Oh, Ji Eun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>RED-Net: A Neural Network for 3D Thyroid Segmentation in Chest CT Using Residual and Dilated Convolutions for Measuring Thyroid Volume</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2025</date><risdate>2025</risdate><volume>13</volume><spage>3026</spage><epage>3037</epage><pages>3026-3037</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Unlike the lungs or the heart, the thyroid gland is not a primary target in chest computed tomography (CT) scans and is relatively small; hence, it is difficult for radiologists to always clinically delineate it in chest CT to incidentally detect a goiter. We designed a residual and dilated convolution neural network (RED-Net), which automatically measures thyroid volume by segmenting the thyroid gland in contrast-enhanced chest CT scans. Its fundamental structure comprises a residual downsampling and upsampling pathway, complemented by a parallel dilated convolution module. This combination allows the model to extract features at multiple scales and capture contextual information to effectively segment even tiny thyroid glands in the complex anatomical structures observed in chest CT scans. Additionally, we constructed training and validation sets comprising CT scans of 1,150 adults (aged <inline-formula> <tex-math notation="LaTeX">\ge 19 </tex-math></inline-formula> years) who underwent chest CT scans at the National Cancer Center and included data of those without a history of thyroid nodules, C73 diagnosis, or thyroid surgery before scanning procedure. We evaluated the performance of our method on a test dataset (600 patients) comprising chest CT scans of individuals collected at Chungbuk National University Hospital using the same criteria. The results showed that it achieved state-of-the-art performance with a Dice similarity coefficient of 0.8901.</abstract><pub>IEEE</pub><doi>10.1109/ACCESS.2024.3523766</doi><tpages>12</tpages><orcidid>https://orcid.org/0009-0005-3289-0794</orcidid><orcidid>https://orcid.org/0000-0002-1953-9845</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2025, Vol.13, p.3026-3037 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_crossref_primary_10_1109_ACCESS_2024_3523766 |
source | DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; IEEE Xplore Open Access Journals |
subjects | Accuracy Cancer Chest CT scans Computed tomography dilated convolution Feature extraction goiter Image segmentation Lungs RED-Net residual blocks Three-dimensional displays Thyroid thyroid segmentation thyroid volume Training Volume measurement |
title | RED-Net: A Neural Network for 3D Thyroid Segmentation in Chest CT Using Residual and Dilated Convolutions for Measuring Thyroid Volume |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T22%3A03%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-doaj_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=RED-Net:%20A%20Neural%20Network%20for%203D%20Thyroid%20Segmentation%20in%20Chest%20CT%20Using%20Residual%20and%20Dilated%20Convolutions%20for%20Measuring%20Thyroid%20Volume&rft.jtitle=IEEE%20access&rft.au=Kim,%20Min-Ji&rft.date=2025&rft.volume=13&rft.spage=3026&rft.epage=3037&rft.pages=3026-3037&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2024.3523766&rft_dat=%3Cdoaj_cross%3Eoai_doaj_org_article_964fe6f6e26747e58ac782cf059fe951%3C/doaj_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10817600&rft_doaj_id=oai_doaj_org_article_964fe6f6e26747e58ac782cf059fe951&rfr_iscdi=true |