Semi-Supervised Learning With Wafer-Specific Augmentations for Wafer Defect Classification
Semi-supervised learning (SSL) models, which leverage both labeled and unlabeled datasets, have been increasingly applied to classify wafer bin map patterns in semiconductor manufacturing. These models typically outperform supervised learning models in scenarios where labeled data are scarce. Howeve...
Gespeichert in:
Veröffentlicht in: | IEEE access 2025, Vol.13, p.56-66 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 66 |
---|---|
container_issue | |
container_start_page | 56 |
container_title | IEEE access |
container_volume | 13 |
creator | Jo, Uk Bum Kim, Seoung |
description | Semi-supervised learning (SSL) models, which leverage both labeled and unlabeled datasets, have been increasingly applied to classify wafer bin map patterns in semiconductor manufacturing. These models typically outperform supervised learning models in scenarios where labeled data are scarce. However, the challenges posed by wafer bin map data in applying conventional image augmentation methods, particularly within SSL frameworks such as FixMatch, have not yet been fully addressed despite their significant role. Recognizing the importance of thoughtful implementation of weak and strong augmentations within FixMatch, we propose a method that incorporates saliency map information into cutout augmentation. This approach preserves essential regions crucial for wafer defect pattern classification and thus improving model performance. Our approach achieves a macro F1-score of 0.841 with only 5% labeled data, surpassing state-of-the-art methods by 6.2% compared to WaPIRL and 7.5% compared to Manivannan's method. Similarly, with 10%, 25%, and 50% labeled data, our method achieves F1-scores of 0.856, 0.874, and 0.891, respectively, showing improvements of 3.5%, 1.7%, and 1.2% over WaPIRL and 5.0%, 6.6%, and 11.9% over Manivannan's method in each case. Experimental results indicate significant improvements in defect pattern classification by avoiding cutting important regions in cutout augmentation. The proposed method achieves new state-of-the-art performance in wafer bin map defect classification, demonstrating the potential of our tailored augmentation techniques and the effectiveness of incorporating saliency map information reflecting the characteristics of wafer bin maps. |
doi_str_mv | 10.1109/ACCESS.2024.3522180 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2024_3522180</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10813350</ieee_id><doaj_id>oai_doaj_org_article_b46d5f8b90bc4d66a40a4fbdcc5d9cef</doaj_id><sourcerecordid>3151264130</sourcerecordid><originalsourceid>FETCH-LOGICAL-c289t-98667b887a0c8ebaf534d8b100afac9809fe9d185464e5dc44b167674878de283</originalsourceid><addsrcrecordid>eNpNkU9LAzEQxRdRsGg_gR4WPG9NNn82OZa1aqHgYZWCl5BNJjWl3a3JVvDbu-0W6VxmGH7vzcBLkjuMJhgj-Tgty1lVTXKU0wlheY4FukhGOeYyI4zwy7P5OhnHuEZ9iX7FilHyWcHWZ9V-B-HHR7DpAnRofLNKl777SpfaQciqHRjvvEmn-9UWmk53vm1i6towAOkTODBdWm50jAfwCNwmV05vIoxP_Sb5eJ69l6_Z4u1lXk4XmcmF7DIpOC9qIQqNjIBaO0aoFTVGSDttpEDSgbRYMMopMGsorTEveEFFISzkgtwk88HXtnqtdsFvdfhVrfbquGjDSunQebMBVVNumRO1RLWhlnNNkaautsYwKw243uth8NqF9nsPsVPrdh-a_n1FMMM5p5igniIDZUIbYwD3fxUjdchEDZmoQybqlEmvuh9UHgDOFAITwhD5A2zeiIk</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3151264130</pqid></control><display><type>article</type><title>Semi-Supervised Learning With Wafer-Specific Augmentations for Wafer Defect Classification</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Jo, Uk ; Bum Kim, Seoung</creator><creatorcontrib>Jo, Uk ; Bum Kim, Seoung</creatorcontrib><description>Semi-supervised learning (SSL) models, which leverage both labeled and unlabeled datasets, have been increasingly applied to classify wafer bin map patterns in semiconductor manufacturing. These models typically outperform supervised learning models in scenarios where labeled data are scarce. However, the challenges posed by wafer bin map data in applying conventional image augmentation methods, particularly within SSL frameworks such as FixMatch, have not yet been fully addressed despite their significant role. Recognizing the importance of thoughtful implementation of weak and strong augmentations within FixMatch, we propose a method that incorporates saliency map information into cutout augmentation. This approach preserves essential regions crucial for wafer defect pattern classification and thus improving model performance. Our approach achieves a macro F1-score of 0.841 with only 5% labeled data, surpassing state-of-the-art methods by 6.2% compared to WaPIRL and 7.5% compared to Manivannan's method. Similarly, with 10%, 25%, and 50% labeled data, our method achieves F1-scores of 0.856, 0.874, and 0.891, respectively, showing improvements of 3.5%, 1.7%, and 1.2% over WaPIRL and 5.0%, 6.6%, and 11.9% over Manivannan's method in each case. Experimental results indicate significant improvements in defect pattern classification by avoiding cutting important regions in cutout augmentation. The proposed method achieves new state-of-the-art performance in wafer bin map defect classification, demonstrating the potential of our tailored augmentation techniques and the effectiveness of incorporating saliency map information reflecting the characteristics of wafer bin maps.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2024.3522180</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Classification ; Data augmentation ; Data models ; defect patterns classification ; Defects ; Feature extraction ; Labeling ; Machine learning ; Pattern classification ; Pattern recognition ; Salience ; Semi-supervised learning ; Semiconductor device modeling ; semiconductor manufacturing ; Semiconductors ; Semisupervised learning ; Spatial filters ; Supervised learning ; Training ; wafer bin maps</subject><ispartof>IEEE access, 2025, Vol.13, p.56-66</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c289t-98667b887a0c8ebaf534d8b100afac9809fe9d185464e5dc44b167674878de283</cites><orcidid>0000-0002-2205-8516 ; 0009-0000-7494-2373</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10813350$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,4010,27610,27900,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Jo, Uk</creatorcontrib><creatorcontrib>Bum Kim, Seoung</creatorcontrib><title>Semi-Supervised Learning With Wafer-Specific Augmentations for Wafer Defect Classification</title><title>IEEE access</title><addtitle>Access</addtitle><description>Semi-supervised learning (SSL) models, which leverage both labeled and unlabeled datasets, have been increasingly applied to classify wafer bin map patterns in semiconductor manufacturing. These models typically outperform supervised learning models in scenarios where labeled data are scarce. However, the challenges posed by wafer bin map data in applying conventional image augmentation methods, particularly within SSL frameworks such as FixMatch, have not yet been fully addressed despite their significant role. Recognizing the importance of thoughtful implementation of weak and strong augmentations within FixMatch, we propose a method that incorporates saliency map information into cutout augmentation. This approach preserves essential regions crucial for wafer defect pattern classification and thus improving model performance. Our approach achieves a macro F1-score of 0.841 with only 5% labeled data, surpassing state-of-the-art methods by 6.2% compared to WaPIRL and 7.5% compared to Manivannan's method. Similarly, with 10%, 25%, and 50% labeled data, our method achieves F1-scores of 0.856, 0.874, and 0.891, respectively, showing improvements of 3.5%, 1.7%, and 1.2% over WaPIRL and 5.0%, 6.6%, and 11.9% over Manivannan's method in each case. Experimental results indicate significant improvements in defect pattern classification by avoiding cutting important regions in cutout augmentation. The proposed method achieves new state-of-the-art performance in wafer bin map defect classification, demonstrating the potential of our tailored augmentation techniques and the effectiveness of incorporating saliency map information reflecting the characteristics of wafer bin maps.</description><subject>Classification</subject><subject>Data augmentation</subject><subject>Data models</subject><subject>defect patterns classification</subject><subject>Defects</subject><subject>Feature extraction</subject><subject>Labeling</subject><subject>Machine learning</subject><subject>Pattern classification</subject><subject>Pattern recognition</subject><subject>Salience</subject><subject>Semi-supervised learning</subject><subject>Semiconductor device modeling</subject><subject>semiconductor manufacturing</subject><subject>Semiconductors</subject><subject>Semisupervised learning</subject><subject>Spatial filters</subject><subject>Supervised learning</subject><subject>Training</subject><subject>wafer bin maps</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkU9LAzEQxRdRsGg_gR4WPG9NNn82OZa1aqHgYZWCl5BNJjWl3a3JVvDbu-0W6VxmGH7vzcBLkjuMJhgj-Tgty1lVTXKU0wlheY4FukhGOeYyI4zwy7P5OhnHuEZ9iX7FilHyWcHWZ9V-B-HHR7DpAnRofLNKl777SpfaQciqHRjvvEmn-9UWmk53vm1i6towAOkTODBdWm50jAfwCNwmV05vIoxP_Sb5eJ69l6_Z4u1lXk4XmcmF7DIpOC9qIQqNjIBaO0aoFTVGSDttpEDSgbRYMMopMGsorTEveEFFISzkgtwk88HXtnqtdsFvdfhVrfbquGjDSunQebMBVVNumRO1RLWhlnNNkaautsYwKw243uth8NqF9nsPsVPrdh-a_n1FMMM5p5igniIDZUIbYwD3fxUjdchEDZmoQybqlEmvuh9UHgDOFAITwhD5A2zeiIk</recordid><startdate>2025</startdate><enddate>2025</enddate><creator>Jo, Uk</creator><creator>Bum Kim, Seoung</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-2205-8516</orcidid><orcidid>https://orcid.org/0009-0000-7494-2373</orcidid></search><sort><creationdate>2025</creationdate><title>Semi-Supervised Learning With Wafer-Specific Augmentations for Wafer Defect Classification</title><author>Jo, Uk ; Bum Kim, Seoung</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c289t-98667b887a0c8ebaf534d8b100afac9809fe9d185464e5dc44b167674878de283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Classification</topic><topic>Data augmentation</topic><topic>Data models</topic><topic>defect patterns classification</topic><topic>Defects</topic><topic>Feature extraction</topic><topic>Labeling</topic><topic>Machine learning</topic><topic>Pattern classification</topic><topic>Pattern recognition</topic><topic>Salience</topic><topic>Semi-supervised learning</topic><topic>Semiconductor device modeling</topic><topic>semiconductor manufacturing</topic><topic>Semiconductors</topic><topic>Semisupervised learning</topic><topic>Spatial filters</topic><topic>Supervised learning</topic><topic>Training</topic><topic>wafer bin maps</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jo, Uk</creatorcontrib><creatorcontrib>Bum Kim, Seoung</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jo, Uk</au><au>Bum Kim, Seoung</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Semi-Supervised Learning With Wafer-Specific Augmentations for Wafer Defect Classification</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2025</date><risdate>2025</risdate><volume>13</volume><spage>56</spage><epage>66</epage><pages>56-66</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Semi-supervised learning (SSL) models, which leverage both labeled and unlabeled datasets, have been increasingly applied to classify wafer bin map patterns in semiconductor manufacturing. These models typically outperform supervised learning models in scenarios where labeled data are scarce. However, the challenges posed by wafer bin map data in applying conventional image augmentation methods, particularly within SSL frameworks such as FixMatch, have not yet been fully addressed despite their significant role. Recognizing the importance of thoughtful implementation of weak and strong augmentations within FixMatch, we propose a method that incorporates saliency map information into cutout augmentation. This approach preserves essential regions crucial for wafer defect pattern classification and thus improving model performance. Our approach achieves a macro F1-score of 0.841 with only 5% labeled data, surpassing state-of-the-art methods by 6.2% compared to WaPIRL and 7.5% compared to Manivannan's method. Similarly, with 10%, 25%, and 50% labeled data, our method achieves F1-scores of 0.856, 0.874, and 0.891, respectively, showing improvements of 3.5%, 1.7%, and 1.2% over WaPIRL and 5.0%, 6.6%, and 11.9% over Manivannan's method in each case. Experimental results indicate significant improvements in defect pattern classification by avoiding cutting important regions in cutout augmentation. The proposed method achieves new state-of-the-art performance in wafer bin map defect classification, demonstrating the potential of our tailored augmentation techniques and the effectiveness of incorporating saliency map information reflecting the characteristics of wafer bin maps.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2024.3522180</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-2205-8516</orcidid><orcidid>https://orcid.org/0009-0000-7494-2373</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2025, Vol.13, p.56-66 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_crossref_primary_10_1109_ACCESS_2024_3522180 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Classification Data augmentation Data models defect patterns classification Defects Feature extraction Labeling Machine learning Pattern classification Pattern recognition Salience Semi-supervised learning Semiconductor device modeling semiconductor manufacturing Semiconductors Semisupervised learning Spatial filters Supervised learning Training wafer bin maps |
title | Semi-Supervised Learning With Wafer-Specific Augmentations for Wafer Defect Classification |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-16T03%3A24%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Semi-Supervised%20Learning%20With%20Wafer-Specific%20Augmentations%20for%20Wafer%20Defect%20Classification&rft.jtitle=IEEE%20access&rft.au=Jo,%20Uk&rft.date=2025&rft.volume=13&rft.spage=56&rft.epage=66&rft.pages=56-66&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2024.3522180&rft_dat=%3Cproquest_cross%3E3151264130%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3151264130&rft_id=info:pmid/&rft_ieee_id=10813350&rft_doaj_id=oai_doaj_org_article_b46d5f8b90bc4d66a40a4fbdcc5d9cef&rfr_iscdi=true |