A Survey on Hybrid-CNN and LLMs for Intrusion Detection Systems: Recent IoT Datasets

Recently, the growing popularity of the Internet of Things (IoT) presents a promising opportunity not only for the expansion of various home automation systems but also for diverse industrial applications. By leveraging these benefits, automation is being implemented in industries, leading to the In...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2024, Vol.12, p.180009-180033
Hauptverfasser: Elouardi, Saida, Motii, Anas, Jouhari, Mohammed, Nasser Hassane Amadou, Abdoul, Hedabou, Mustapha
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 180033
container_issue
container_start_page 180009
container_title IEEE access
container_volume 12
creator Elouardi, Saida
Motii, Anas
Jouhari, Mohammed
Nasser Hassane Amadou, Abdoul
Hedabou, Mustapha
description Recently, the growing popularity of the Internet of Things (IoT) presents a promising opportunity not only for the expansion of various home automation systems but also for diverse industrial applications. By leveraging these benefits, automation is being implemented in industries, leading to the Industrial Internet of Things (IIoT). Although IoT simplifies daily activities that benefit human operations, it poses significant security challenges that warrant attention. Consequently, implementing an Intrusion Detection System (IDS) is a vital and effective solution. IDS aims to address the security and privacy challenges by detecting various IoT attacks. Various IDS methodologies, including those using Machine Learning (ML), Deep Learning (DL) and Large Language Models (LLMs), are employed to identify intrusions within the data; however, improvements to the detection systems are still needed. A literature survey on IDS in the IoT domain is provided, focusing primarily on the recent approaches used in the field. The survey aims to evaluate the literature, identify current trends, retest these approaches on recent data, and highlight open problems and future directions.
doi_str_mv 10.1109/ACCESS.2024.3506604
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2024_3506604</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10767686</ieee_id><doaj_id>oai_doaj_org_article_ea7de9a87d2a4cb4a9f27474816e946d</doaj_id><sourcerecordid>3141611985</sourcerecordid><originalsourceid>FETCH-LOGICAL-c244t-3db55fd7d98710b2748b2d8624efda5d83c211e4bd067ddd396ab5e2b232cef03</originalsourceid><addsrcrecordid>eNpNUV1LwzAULaKgTH-BPgR87sxXk9a30U0tVAU3n0Pa3ErH1swkE_bvzayI9-VeDufjwkmSa4KnhODiblaWi-VySjHlU5ZhITA_SS4oEUXKMiZO_93nyZX3axwnj1AmL5LVDC337gsOyA7o6dC43qTlywvSg0F1_exRZx2qhuD2vo-MOQRow_FaHnyArb9Hb9DCEFBlV2iug_YQ_GVy1umNh6vfPUneHxar8imtXx-rclanLeU8pMw0WdYZaYpcEtxQyfOGmlxQDp3RmclZSwkB3hgspDGGFUI3GdCGMtpCh9kkqUZfY_Va7Vy_1e6grO7VD2Ddh9Iu9O0GFGhpoNC5NFTztuG66GJeTCQCCi5M9LodvXbOfu7BB7W2ezfE9xUjnAhCijyLLDayWme9d9D9pRKsjm2osQ11bEP9thFVN6OqB4B_CimkyAX7BptqhKc</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3141611985</pqid></control><display><type>article</type><title>A Survey on Hybrid-CNN and LLMs for Intrusion Detection Systems: Recent IoT Datasets</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Elouardi, Saida ; Motii, Anas ; Jouhari, Mohammed ; Nasser Hassane Amadou, Abdoul ; Hedabou, Mustapha</creator><creatorcontrib>Elouardi, Saida ; Motii, Anas ; Jouhari, Mohammed ; Nasser Hassane Amadou, Abdoul ; Hedabou, Mustapha</creatorcontrib><description>Recently, the growing popularity of the Internet of Things (IoT) presents a promising opportunity not only for the expansion of various home automation systems but also for diverse industrial applications. By leveraging these benefits, automation is being implemented in industries, leading to the Industrial Internet of Things (IIoT). Although IoT simplifies daily activities that benefit human operations, it poses significant security challenges that warrant attention. Consequently, implementing an Intrusion Detection System (IDS) is a vital and effective solution. IDS aims to address the security and privacy challenges by detecting various IoT attacks. Various IDS methodologies, including those using Machine Learning (ML), Deep Learning (DL) and Large Language Models (LLMs), are employed to identify intrusions within the data; however, improvements to the detection systems are still needed. A literature survey on IDS in the IoT domain is provided, focusing primarily on the recent approaches used in the field. The survey aims to evaluate the literature, identify current trends, retest these approaches on recent data, and highlight open problems and future directions.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2024.3506604</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Artificial intelligence ; Automation ; Cybersecurity ; Deep learning ; Focusing ; Industrial applications ; Internet of Things ; Intrusion detection ; Intrusion detection systems ; Large language models ; Literature reviews ; Machine learning ; network ; Reviews ; Security ; Surveys</subject><ispartof>IEEE access, 2024, Vol.12, p.180009-180033</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c244t-3db55fd7d98710b2748b2d8624efda5d83c211e4bd067ddd396ab5e2b232cef03</cites><orcidid>0009-0004-0973-0859 ; 0000-0002-7872-4469 ; 0009-0005-4936-0028</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10767686$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,4010,27610,27900,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Elouardi, Saida</creatorcontrib><creatorcontrib>Motii, Anas</creatorcontrib><creatorcontrib>Jouhari, Mohammed</creatorcontrib><creatorcontrib>Nasser Hassane Amadou, Abdoul</creatorcontrib><creatorcontrib>Hedabou, Mustapha</creatorcontrib><title>A Survey on Hybrid-CNN and LLMs for Intrusion Detection Systems: Recent IoT Datasets</title><title>IEEE access</title><addtitle>Access</addtitle><description>Recently, the growing popularity of the Internet of Things (IoT) presents a promising opportunity not only for the expansion of various home automation systems but also for diverse industrial applications. By leveraging these benefits, automation is being implemented in industries, leading to the Industrial Internet of Things (IIoT). Although IoT simplifies daily activities that benefit human operations, it poses significant security challenges that warrant attention. Consequently, implementing an Intrusion Detection System (IDS) is a vital and effective solution. IDS aims to address the security and privacy challenges by detecting various IoT attacks. Various IDS methodologies, including those using Machine Learning (ML), Deep Learning (DL) and Large Language Models (LLMs), are employed to identify intrusions within the data; however, improvements to the detection systems are still needed. A literature survey on IDS in the IoT domain is provided, focusing primarily on the recent approaches used in the field. The survey aims to evaluate the literature, identify current trends, retest these approaches on recent data, and highlight open problems and future directions.</description><subject>Artificial intelligence</subject><subject>Automation</subject><subject>Cybersecurity</subject><subject>Deep learning</subject><subject>Focusing</subject><subject>Industrial applications</subject><subject>Internet of Things</subject><subject>Intrusion detection</subject><subject>Intrusion detection systems</subject><subject>Large language models</subject><subject>Literature reviews</subject><subject>Machine learning</subject><subject>network</subject><subject>Reviews</subject><subject>Security</subject><subject>Surveys</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUV1LwzAULaKgTH-BPgR87sxXk9a30U0tVAU3n0Pa3ErH1swkE_bvzayI9-VeDufjwkmSa4KnhODiblaWi-VySjHlU5ZhITA_SS4oEUXKMiZO_93nyZX3axwnj1AmL5LVDC337gsOyA7o6dC43qTlywvSg0F1_exRZx2qhuD2vo-MOQRow_FaHnyArb9Hb9DCEFBlV2iug_YQ_GVy1umNh6vfPUneHxar8imtXx-rclanLeU8pMw0WdYZaYpcEtxQyfOGmlxQDp3RmclZSwkB3hgspDGGFUI3GdCGMtpCh9kkqUZfY_Va7Vy_1e6grO7VD2Ddh9Iu9O0GFGhpoNC5NFTztuG66GJeTCQCCi5M9LodvXbOfu7BB7W2ezfE9xUjnAhCijyLLDayWme9d9D9pRKsjm2osQ11bEP9thFVN6OqB4B_CimkyAX7BptqhKc</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Elouardi, Saida</creator><creator>Motii, Anas</creator><creator>Jouhari, Mohammed</creator><creator>Nasser Hassane Amadou, Abdoul</creator><creator>Hedabou, Mustapha</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0009-0004-0973-0859</orcidid><orcidid>https://orcid.org/0000-0002-7872-4469</orcidid><orcidid>https://orcid.org/0009-0005-4936-0028</orcidid></search><sort><creationdate>2024</creationdate><title>A Survey on Hybrid-CNN and LLMs for Intrusion Detection Systems: Recent IoT Datasets</title><author>Elouardi, Saida ; Motii, Anas ; Jouhari, Mohammed ; Nasser Hassane Amadou, Abdoul ; Hedabou, Mustapha</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c244t-3db55fd7d98710b2748b2d8624efda5d83c211e4bd067ddd396ab5e2b232cef03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Artificial intelligence</topic><topic>Automation</topic><topic>Cybersecurity</topic><topic>Deep learning</topic><topic>Focusing</topic><topic>Industrial applications</topic><topic>Internet of Things</topic><topic>Intrusion detection</topic><topic>Intrusion detection systems</topic><topic>Large language models</topic><topic>Literature reviews</topic><topic>Machine learning</topic><topic>network</topic><topic>Reviews</topic><topic>Security</topic><topic>Surveys</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Elouardi, Saida</creatorcontrib><creatorcontrib>Motii, Anas</creatorcontrib><creatorcontrib>Jouhari, Mohammed</creatorcontrib><creatorcontrib>Nasser Hassane Amadou, Abdoul</creatorcontrib><creatorcontrib>Hedabou, Mustapha</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Elouardi, Saida</au><au>Motii, Anas</au><au>Jouhari, Mohammed</au><au>Nasser Hassane Amadou, Abdoul</au><au>Hedabou, Mustapha</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Survey on Hybrid-CNN and LLMs for Intrusion Detection Systems: Recent IoT Datasets</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2024</date><risdate>2024</risdate><volume>12</volume><spage>180009</spage><epage>180033</epage><pages>180009-180033</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Recently, the growing popularity of the Internet of Things (IoT) presents a promising opportunity not only for the expansion of various home automation systems but also for diverse industrial applications. By leveraging these benefits, automation is being implemented in industries, leading to the Industrial Internet of Things (IIoT). Although IoT simplifies daily activities that benefit human operations, it poses significant security challenges that warrant attention. Consequently, implementing an Intrusion Detection System (IDS) is a vital and effective solution. IDS aims to address the security and privacy challenges by detecting various IoT attacks. Various IDS methodologies, including those using Machine Learning (ML), Deep Learning (DL) and Large Language Models (LLMs), are employed to identify intrusions within the data; however, improvements to the detection systems are still needed. A literature survey on IDS in the IoT domain is provided, focusing primarily on the recent approaches used in the field. The survey aims to evaluate the literature, identify current trends, retest these approaches on recent data, and highlight open problems and future directions.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2024.3506604</doi><tpages>25</tpages><orcidid>https://orcid.org/0009-0004-0973-0859</orcidid><orcidid>https://orcid.org/0000-0002-7872-4469</orcidid><orcidid>https://orcid.org/0009-0005-4936-0028</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2024, Vol.12, p.180009-180033
issn 2169-3536
2169-3536
language eng
recordid cdi_crossref_primary_10_1109_ACCESS_2024_3506604
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Artificial intelligence
Automation
Cybersecurity
Deep learning
Focusing
Industrial applications
Internet of Things
Intrusion detection
Intrusion detection systems
Large language models
Literature reviews
Machine learning
network
Reviews
Security
Surveys
title A Survey on Hybrid-CNN and LLMs for Intrusion Detection Systems: Recent IoT Datasets
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T05%3A05%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Survey%20on%20Hybrid-CNN%20and%20LLMs%20for%20Intrusion%20Detection%20Systems:%20Recent%20IoT%20Datasets&rft.jtitle=IEEE%20access&rft.au=Elouardi,%20Saida&rft.date=2024&rft.volume=12&rft.spage=180009&rft.epage=180033&rft.pages=180009-180033&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2024.3506604&rft_dat=%3Cproquest_cross%3E3141611985%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3141611985&rft_id=info:pmid/&rft_ieee_id=10767686&rft_doaj_id=oai_doaj_org_article_ea7de9a87d2a4cb4a9f27474816e946d&rfr_iscdi=true