Construction of Lightweight Model for Cotton Top Sprout and Research on Targeted Cotton Topping Device
To mitigate potential risks associated with terminal bud inhibitors on cotton plant growth, ecological environment, and human health during cotton topping operations, a lightweight model by integrating the GhostNetV2 network with an end-side neural network architecture based on the improved YOLOv7-t...
Gespeichert in:
Veröffentlicht in: | IEEE access 2024, Vol.12, p.176498-176510 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 176510 |
---|---|
container_issue | |
container_start_page | 176498 |
container_title | IEEE access |
container_volume | 12 |
creator | Jie, Zhang Musha, Yasenjiang Jipeng, Yao |
description | To mitigate potential risks associated with terminal bud inhibitors on cotton plant growth, ecological environment, and human health during cotton topping operations, a lightweight model by integrating the GhostNetV2 network with an end-side neural network architecture based on the improved YOLOv7-tiny algorithm for cotton terminal bud detection. This approach reduces both the model's parameter count and reasoning speed while minimizing accuracy loss. Additionally, an end-effector execution scheme and workflow for contactless targeted spraying is proposed using this model. The deployed model on a Jetson TX2 embedded computer achieved a computation load of only 1.0 G with an average accuracy of 98.2%. Moreover, the number of drug droplets attached to the end-effector per square centimeter meets national standards for targeted spraying. The experimental results show that this method is suitable for cotton topping operations. |
doi_str_mv | 10.1109/ACCESS.2024.3505532 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2024_3505532</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10766495</ieee_id><doaj_id>oai_doaj_org_article_3e7defa4a8b745589b2c947414335ae9</doaj_id><sourcerecordid>3140641137</sourcerecordid><originalsourceid>FETCH-LOGICAL-c289t-994d3de90d92303c44ba495a848ad3c5ae1f8d3ed9fe2d702e7a0ab5ce3a97a3</originalsourceid><addsrcrecordid>eNpNUU1rGzEQXUoKDWl-QXIQ9GxH0kir1TFsPsGlUPsuxtKss8ZdOVo5of--cjYU6zAaZt57M8OrqivB50Jwe3PbtvfL5VxyqeagudYgv1TnUtR2Bhrqs5P8W3U5jlteXlNK2pxXXRuHMaeDz30cWOzYot-85Hc6RvYzBtqxLibWxpxLfxX3bLlP8ZAZDoH9ppEw-Rd2bGHaUKZwAt33w4bd0Vvv6Xv1tcPdSJef_0W1erhftU-zxa_H5_Z2MfOysXlmrQoQyPJgJXDwSq1RWY2NajCA10iiawJQsB3JYLgkgxzX2hOgNQgX1fMkGyJu3T71fzD9dRF791GIaeMw5d7vyAGZQB0qbNZGad3YtfRWGSUUQJlji9aPSavc-3qgMbttPKShbO9AKF4rIcAUFEwon-I4Jur-TxXcHe1xkz3uaI_7tKewridWT0QnDFPX5Vz4B2S5jEk</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3140641137</pqid></control><display><type>article</type><title>Construction of Lightweight Model for Cotton Top Sprout and Research on Targeted Cotton Topping Device</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Jie, Zhang ; Musha, Yasenjiang ; Jipeng, Yao</creator><creatorcontrib>Jie, Zhang ; Musha, Yasenjiang ; Jipeng, Yao</creatorcontrib><description>To mitigate potential risks associated with terminal bud inhibitors on cotton plant growth, ecological environment, and human health during cotton topping operations, a lightweight model by integrating the GhostNetV2 network with an end-side neural network architecture based on the improved YOLOv7-tiny algorithm for cotton terminal bud detection. This approach reduces both the model's parameter count and reasoning speed while minimizing accuracy loss. Additionally, an end-effector execution scheme and workflow for contactless targeted spraying is proposed using this model. The deployed model on a Jetson TX2 embedded computer achieved a computation load of only 1.0 G with an average accuracy of 98.2%. Moreover, the number of drug droplets attached to the end-effector per square centimeter meets national standards for targeted spraying. The experimental results show that this method is suitable for cotton topping operations.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2024.3505532</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Accuracy ; Algorithms ; Biological system modeling ; Computational efficiency ; Computational modeling ; Cotton ; Cotton topping ; deep learning ; End effectors ; Feature extraction ; Lightweight ; Load modeling ; Location awareness ; Neural networks ; precision topping ; spatial localization ; Spraying ; Visualization ; Weight reduction ; Workflow ; YOLOv7-tiny</subject><ispartof>IEEE access, 2024, Vol.12, p.176498-176510</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c289t-994d3de90d92303c44ba495a848ad3c5ae1f8d3ed9fe2d702e7a0ab5ce3a97a3</cites><orcidid>0009-0003-9344-2712 ; 0009-0001-6884-6032 ; 0009-0008-6455-0032</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10766495$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2095,4009,27612,27902,27903,27904,54912</link.rule.ids></links><search><creatorcontrib>Jie, Zhang</creatorcontrib><creatorcontrib>Musha, Yasenjiang</creatorcontrib><creatorcontrib>Jipeng, Yao</creatorcontrib><title>Construction of Lightweight Model for Cotton Top Sprout and Research on Targeted Cotton Topping Device</title><title>IEEE access</title><addtitle>Access</addtitle><description>To mitigate potential risks associated with terminal bud inhibitors on cotton plant growth, ecological environment, and human health during cotton topping operations, a lightweight model by integrating the GhostNetV2 network with an end-side neural network architecture based on the improved YOLOv7-tiny algorithm for cotton terminal bud detection. This approach reduces both the model's parameter count and reasoning speed while minimizing accuracy loss. Additionally, an end-effector execution scheme and workflow for contactless targeted spraying is proposed using this model. The deployed model on a Jetson TX2 embedded computer achieved a computation load of only 1.0 G with an average accuracy of 98.2%. Moreover, the number of drug droplets attached to the end-effector per square centimeter meets national standards for targeted spraying. The experimental results show that this method is suitable for cotton topping operations.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Biological system modeling</subject><subject>Computational efficiency</subject><subject>Computational modeling</subject><subject>Cotton</subject><subject>Cotton topping</subject><subject>deep learning</subject><subject>End effectors</subject><subject>Feature extraction</subject><subject>Lightweight</subject><subject>Load modeling</subject><subject>Location awareness</subject><subject>Neural networks</subject><subject>precision topping</subject><subject>spatial localization</subject><subject>Spraying</subject><subject>Visualization</subject><subject>Weight reduction</subject><subject>Workflow</subject><subject>YOLOv7-tiny</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1rGzEQXUoKDWl-QXIQ9GxH0kir1TFsPsGlUPsuxtKss8ZdOVo5of--cjYU6zAaZt57M8OrqivB50Jwe3PbtvfL5VxyqeagudYgv1TnUtR2Bhrqs5P8W3U5jlteXlNK2pxXXRuHMaeDz30cWOzYot-85Hc6RvYzBtqxLibWxpxLfxX3bLlP8ZAZDoH9ppEw-Rd2bGHaUKZwAt33w4bd0Vvv6Xv1tcPdSJef_0W1erhftU-zxa_H5_Z2MfOysXlmrQoQyPJgJXDwSq1RWY2NajCA10iiawJQsB3JYLgkgxzX2hOgNQgX1fMkGyJu3T71fzD9dRF791GIaeMw5d7vyAGZQB0qbNZGad3YtfRWGSUUQJlji9aPSavc-3qgMbttPKShbO9AKF4rIcAUFEwon-I4Jur-TxXcHe1xkz3uaI_7tKewridWT0QnDFPX5Vz4B2S5jEk</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Jie, Zhang</creator><creator>Musha, Yasenjiang</creator><creator>Jipeng, Yao</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0009-0003-9344-2712</orcidid><orcidid>https://orcid.org/0009-0001-6884-6032</orcidid><orcidid>https://orcid.org/0009-0008-6455-0032</orcidid></search><sort><creationdate>2024</creationdate><title>Construction of Lightweight Model for Cotton Top Sprout and Research on Targeted Cotton Topping Device</title><author>Jie, Zhang ; Musha, Yasenjiang ; Jipeng, Yao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c289t-994d3de90d92303c44ba495a848ad3c5ae1f8d3ed9fe2d702e7a0ab5ce3a97a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Biological system modeling</topic><topic>Computational efficiency</topic><topic>Computational modeling</topic><topic>Cotton</topic><topic>Cotton topping</topic><topic>deep learning</topic><topic>End effectors</topic><topic>Feature extraction</topic><topic>Lightweight</topic><topic>Load modeling</topic><topic>Location awareness</topic><topic>Neural networks</topic><topic>precision topping</topic><topic>spatial localization</topic><topic>Spraying</topic><topic>Visualization</topic><topic>Weight reduction</topic><topic>Workflow</topic><topic>YOLOv7-tiny</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jie, Zhang</creatorcontrib><creatorcontrib>Musha, Yasenjiang</creatorcontrib><creatorcontrib>Jipeng, Yao</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jie, Zhang</au><au>Musha, Yasenjiang</au><au>Jipeng, Yao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Construction of Lightweight Model for Cotton Top Sprout and Research on Targeted Cotton Topping Device</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2024</date><risdate>2024</risdate><volume>12</volume><spage>176498</spage><epage>176510</epage><pages>176498-176510</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>To mitigate potential risks associated with terminal bud inhibitors on cotton plant growth, ecological environment, and human health during cotton topping operations, a lightweight model by integrating the GhostNetV2 network with an end-side neural network architecture based on the improved YOLOv7-tiny algorithm for cotton terminal bud detection. This approach reduces both the model's parameter count and reasoning speed while minimizing accuracy loss. Additionally, an end-effector execution scheme and workflow for contactless targeted spraying is proposed using this model. The deployed model on a Jetson TX2 embedded computer achieved a computation load of only 1.0 G with an average accuracy of 98.2%. Moreover, the number of drug droplets attached to the end-effector per square centimeter meets national standards for targeted spraying. The experimental results show that this method is suitable for cotton topping operations.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2024.3505532</doi><tpages>13</tpages><orcidid>https://orcid.org/0009-0003-9344-2712</orcidid><orcidid>https://orcid.org/0009-0001-6884-6032</orcidid><orcidid>https://orcid.org/0009-0008-6455-0032</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2024, Vol.12, p.176498-176510 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_crossref_primary_10_1109_ACCESS_2024_3505532 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Accuracy Algorithms Biological system modeling Computational efficiency Computational modeling Cotton Cotton topping deep learning End effectors Feature extraction Lightweight Load modeling Location awareness Neural networks precision topping spatial localization Spraying Visualization Weight reduction Workflow YOLOv7-tiny |
title | Construction of Lightweight Model for Cotton Top Sprout and Research on Targeted Cotton Topping Device |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T10%3A12%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Construction%20of%20Lightweight%20Model%20for%20Cotton%20Top%20Sprout%20and%20Research%20on%20Targeted%20Cotton%20Topping%20Device&rft.jtitle=IEEE%20access&rft.au=Jie,%20Zhang&rft.date=2024&rft.volume=12&rft.spage=176498&rft.epage=176510&rft.pages=176498-176510&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2024.3505532&rft_dat=%3Cproquest_cross%3E3140641137%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3140641137&rft_id=info:pmid/&rft_ieee_id=10766495&rft_doaj_id=oai_doaj_org_article_3e7defa4a8b745589b2c947414335ae9&rfr_iscdi=true |