Construction of Lightweight Model for Cotton Top Sprout and Research on Targeted Cotton Topping Device

To mitigate potential risks associated with terminal bud inhibitors on cotton plant growth, ecological environment, and human health during cotton topping operations, a lightweight model by integrating the GhostNetV2 network with an end-side neural network architecture based on the improved YOLOv7-t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2024, Vol.12, p.176498-176510
Hauptverfasser: Jie, Zhang, Musha, Yasenjiang, Jipeng, Yao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 176510
container_issue
container_start_page 176498
container_title IEEE access
container_volume 12
creator Jie, Zhang
Musha, Yasenjiang
Jipeng, Yao
description To mitigate potential risks associated with terminal bud inhibitors on cotton plant growth, ecological environment, and human health during cotton topping operations, a lightweight model by integrating the GhostNetV2 network with an end-side neural network architecture based on the improved YOLOv7-tiny algorithm for cotton terminal bud detection. This approach reduces both the model's parameter count and reasoning speed while minimizing accuracy loss. Additionally, an end-effector execution scheme and workflow for contactless targeted spraying is proposed using this model. The deployed model on a Jetson TX2 embedded computer achieved a computation load of only 1.0 G with an average accuracy of 98.2%. Moreover, the number of drug droplets attached to the end-effector per square centimeter meets national standards for targeted spraying. The experimental results show that this method is suitable for cotton topping operations.
doi_str_mv 10.1109/ACCESS.2024.3505532
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2024_3505532</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10766495</ieee_id><doaj_id>oai_doaj_org_article_3e7defa4a8b745589b2c947414335ae9</doaj_id><sourcerecordid>3140641137</sourcerecordid><originalsourceid>FETCH-LOGICAL-c289t-994d3de90d92303c44ba495a848ad3c5ae1f8d3ed9fe2d702e7a0ab5ce3a97a3</originalsourceid><addsrcrecordid>eNpNUU1rGzEQXUoKDWl-QXIQ9GxH0kir1TFsPsGlUPsuxtKss8ZdOVo5of--cjYU6zAaZt57M8OrqivB50Jwe3PbtvfL5VxyqeagudYgv1TnUtR2Bhrqs5P8W3U5jlteXlNK2pxXXRuHMaeDz30cWOzYot-85Hc6RvYzBtqxLibWxpxLfxX3bLlP8ZAZDoH9ppEw-Rd2bGHaUKZwAt33w4bd0Vvv6Xv1tcPdSJef_0W1erhftU-zxa_H5_Z2MfOysXlmrQoQyPJgJXDwSq1RWY2NajCA10iiawJQsB3JYLgkgxzX2hOgNQgX1fMkGyJu3T71fzD9dRF791GIaeMw5d7vyAGZQB0qbNZGad3YtfRWGSUUQJlji9aPSavc-3qgMbttPKShbO9AKF4rIcAUFEwon-I4Jur-TxXcHe1xkz3uaI_7tKewridWT0QnDFPX5Vz4B2S5jEk</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3140641137</pqid></control><display><type>article</type><title>Construction of Lightweight Model for Cotton Top Sprout and Research on Targeted Cotton Topping Device</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Jie, Zhang ; Musha, Yasenjiang ; Jipeng, Yao</creator><creatorcontrib>Jie, Zhang ; Musha, Yasenjiang ; Jipeng, Yao</creatorcontrib><description>To mitigate potential risks associated with terminal bud inhibitors on cotton plant growth, ecological environment, and human health during cotton topping operations, a lightweight model by integrating the GhostNetV2 network with an end-side neural network architecture based on the improved YOLOv7-tiny algorithm for cotton terminal bud detection. This approach reduces both the model's parameter count and reasoning speed while minimizing accuracy loss. Additionally, an end-effector execution scheme and workflow for contactless targeted spraying is proposed using this model. The deployed model on a Jetson TX2 embedded computer achieved a computation load of only 1.0 G with an average accuracy of 98.2%. Moreover, the number of drug droplets attached to the end-effector per square centimeter meets national standards for targeted spraying. The experimental results show that this method is suitable for cotton topping operations.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2024.3505532</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Accuracy ; Algorithms ; Biological system modeling ; Computational efficiency ; Computational modeling ; Cotton ; Cotton topping ; deep learning ; End effectors ; Feature extraction ; Lightweight ; Load modeling ; Location awareness ; Neural networks ; precision topping ; spatial localization ; Spraying ; Visualization ; Weight reduction ; Workflow ; YOLOv7-tiny</subject><ispartof>IEEE access, 2024, Vol.12, p.176498-176510</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c289t-994d3de90d92303c44ba495a848ad3c5ae1f8d3ed9fe2d702e7a0ab5ce3a97a3</cites><orcidid>0009-0003-9344-2712 ; 0009-0001-6884-6032 ; 0009-0008-6455-0032</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10766495$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2095,4009,27612,27902,27903,27904,54912</link.rule.ids></links><search><creatorcontrib>Jie, Zhang</creatorcontrib><creatorcontrib>Musha, Yasenjiang</creatorcontrib><creatorcontrib>Jipeng, Yao</creatorcontrib><title>Construction of Lightweight Model for Cotton Top Sprout and Research on Targeted Cotton Topping Device</title><title>IEEE access</title><addtitle>Access</addtitle><description>To mitigate potential risks associated with terminal bud inhibitors on cotton plant growth, ecological environment, and human health during cotton topping operations, a lightweight model by integrating the GhostNetV2 network with an end-side neural network architecture based on the improved YOLOv7-tiny algorithm for cotton terminal bud detection. This approach reduces both the model's parameter count and reasoning speed while minimizing accuracy loss. Additionally, an end-effector execution scheme and workflow for contactless targeted spraying is proposed using this model. The deployed model on a Jetson TX2 embedded computer achieved a computation load of only 1.0 G with an average accuracy of 98.2%. Moreover, the number of drug droplets attached to the end-effector per square centimeter meets national standards for targeted spraying. The experimental results show that this method is suitable for cotton topping operations.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Biological system modeling</subject><subject>Computational efficiency</subject><subject>Computational modeling</subject><subject>Cotton</subject><subject>Cotton topping</subject><subject>deep learning</subject><subject>End effectors</subject><subject>Feature extraction</subject><subject>Lightweight</subject><subject>Load modeling</subject><subject>Location awareness</subject><subject>Neural networks</subject><subject>precision topping</subject><subject>spatial localization</subject><subject>Spraying</subject><subject>Visualization</subject><subject>Weight reduction</subject><subject>Workflow</subject><subject>YOLOv7-tiny</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1rGzEQXUoKDWl-QXIQ9GxH0kir1TFsPsGlUPsuxtKss8ZdOVo5of--cjYU6zAaZt57M8OrqivB50Jwe3PbtvfL5VxyqeagudYgv1TnUtR2Bhrqs5P8W3U5jlteXlNK2pxXXRuHMaeDz30cWOzYot-85Hc6RvYzBtqxLibWxpxLfxX3bLlP8ZAZDoH9ppEw-Rd2bGHaUKZwAt33w4bd0Vvv6Xv1tcPdSJef_0W1erhftU-zxa_H5_Z2MfOysXlmrQoQyPJgJXDwSq1RWY2NajCA10iiawJQsB3JYLgkgxzX2hOgNQgX1fMkGyJu3T71fzD9dRF791GIaeMw5d7vyAGZQB0qbNZGad3YtfRWGSUUQJlji9aPSavc-3qgMbttPKShbO9AKF4rIcAUFEwon-I4Jur-TxXcHe1xkz3uaI_7tKewridWT0QnDFPX5Vz4B2S5jEk</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Jie, Zhang</creator><creator>Musha, Yasenjiang</creator><creator>Jipeng, Yao</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0009-0003-9344-2712</orcidid><orcidid>https://orcid.org/0009-0001-6884-6032</orcidid><orcidid>https://orcid.org/0009-0008-6455-0032</orcidid></search><sort><creationdate>2024</creationdate><title>Construction of Lightweight Model for Cotton Top Sprout and Research on Targeted Cotton Topping Device</title><author>Jie, Zhang ; Musha, Yasenjiang ; Jipeng, Yao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c289t-994d3de90d92303c44ba495a848ad3c5ae1f8d3ed9fe2d702e7a0ab5ce3a97a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Biological system modeling</topic><topic>Computational efficiency</topic><topic>Computational modeling</topic><topic>Cotton</topic><topic>Cotton topping</topic><topic>deep learning</topic><topic>End effectors</topic><topic>Feature extraction</topic><topic>Lightweight</topic><topic>Load modeling</topic><topic>Location awareness</topic><topic>Neural networks</topic><topic>precision topping</topic><topic>spatial localization</topic><topic>Spraying</topic><topic>Visualization</topic><topic>Weight reduction</topic><topic>Workflow</topic><topic>YOLOv7-tiny</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jie, Zhang</creatorcontrib><creatorcontrib>Musha, Yasenjiang</creatorcontrib><creatorcontrib>Jipeng, Yao</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jie, Zhang</au><au>Musha, Yasenjiang</au><au>Jipeng, Yao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Construction of Lightweight Model for Cotton Top Sprout and Research on Targeted Cotton Topping Device</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2024</date><risdate>2024</risdate><volume>12</volume><spage>176498</spage><epage>176510</epage><pages>176498-176510</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>To mitigate potential risks associated with terminal bud inhibitors on cotton plant growth, ecological environment, and human health during cotton topping operations, a lightweight model by integrating the GhostNetV2 network with an end-side neural network architecture based on the improved YOLOv7-tiny algorithm for cotton terminal bud detection. This approach reduces both the model's parameter count and reasoning speed while minimizing accuracy loss. Additionally, an end-effector execution scheme and workflow for contactless targeted spraying is proposed using this model. The deployed model on a Jetson TX2 embedded computer achieved a computation load of only 1.0 G with an average accuracy of 98.2%. Moreover, the number of drug droplets attached to the end-effector per square centimeter meets national standards for targeted spraying. The experimental results show that this method is suitable for cotton topping operations.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2024.3505532</doi><tpages>13</tpages><orcidid>https://orcid.org/0009-0003-9344-2712</orcidid><orcidid>https://orcid.org/0009-0001-6884-6032</orcidid><orcidid>https://orcid.org/0009-0008-6455-0032</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2024, Vol.12, p.176498-176510
issn 2169-3536
2169-3536
language eng
recordid cdi_crossref_primary_10_1109_ACCESS_2024_3505532
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects Accuracy
Algorithms
Biological system modeling
Computational efficiency
Computational modeling
Cotton
Cotton topping
deep learning
End effectors
Feature extraction
Lightweight
Load modeling
Location awareness
Neural networks
precision topping
spatial localization
Spraying
Visualization
Weight reduction
Workflow
YOLOv7-tiny
title Construction of Lightweight Model for Cotton Top Sprout and Research on Targeted Cotton Topping Device
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T10%3A12%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Construction%20of%20Lightweight%20Model%20for%20Cotton%20Top%20Sprout%20and%20Research%20on%20Targeted%20Cotton%20Topping%20Device&rft.jtitle=IEEE%20access&rft.au=Jie,%20Zhang&rft.date=2024&rft.volume=12&rft.spage=176498&rft.epage=176510&rft.pages=176498-176510&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2024.3505532&rft_dat=%3Cproquest_cross%3E3140641137%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3140641137&rft_id=info:pmid/&rft_ieee_id=10766495&rft_doaj_id=oai_doaj_org_article_3e7defa4a8b745589b2c947414335ae9&rfr_iscdi=true