Improved GPT2 Event Extraction Method Based on Mixed Attention Collaborative Layer Vector
As internet information expands rapidly, extracting valuable event information from unstructured text has become an important research topic. This paper proposes an improved GPT2 model, termed HACLV-GPT2, which is the initial utilization of a GPT-like architecture for the purpose of event extraction...
Gespeichert in:
Veröffentlicht in: | IEEE access 2024, Vol.12, p.160074-160082 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 160082 |
---|---|
container_issue | |
container_start_page | 160074 |
container_title | IEEE access |
container_volume | 12 |
creator | Jia, Ruchao Zhang, Zhenling Jia, Yangli Papadopoulou, Maria Roche, Christophe |
description | As internet information expands rapidly, extracting valuable event information from unstructured text has become an important research topic. This paper proposes an improved GPT2 model, termed HACLV-GPT2, which is the initial utilization of a GPT-like architecture for the purpose of event extraction. The model utilizes a generative input template and incorporates a hybrid attention mechanism to enhance the understanding of complex contexts. Additionally, the HACLV-GPT2 model employs a layer-vector fusion strategy to optimize the output of Transformer Blocks, effectively boosting prediction performance. The experimental results show that the HACLV-GPT2 model performs excellently in both event argument extraction and event type detection tasks, with F1 values of 0.8020 and 0.9614, respectively, surpassing several baseline models. This outcome fully validates the effectiveness and superiority of the proposed method. Furthermore, ablation experiments confirm the critical role of the hybrid attention mechanism and layer-vector fusion strategy in performance improvement. |
doi_str_mv | 10.1109/ACCESS.2024.3487836 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2024_3487836</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10737342</ieee_id><doaj_id>oai_doaj_org_article_61bbf741cb8a4f32ad51ab2db29e7fec</doaj_id><sourcerecordid>3124826501</sourcerecordid><originalsourceid>FETCH-LOGICAL-c289t-f836377c20707ac985ac64de45905c0845993daf1cdb9e3d6d232f0924cc829e3</originalsourceid><addsrcrecordid>eNpNUV1LwzAULaLgmPsF-lDwuTNfbZLHWeocTBQ2BZ9CmqTa0S0zzcb2703tkOXl3ntyzsklJ4puIRhDCPjDJM-LxWKMACJjTBhlOLuIBghmPMEpzi7P-uto1LYrEA4LUEoH0edsvXV2b3Q8fVuiuNibjY-Lg3dS-dpu4hfjv62OH2UbKN1cH0Iz8T7wuvvcNo0srZO-3pt4Lo_GxR9GeetuoqtKNq0Zneowen8qlvlzMn-dzvLJPFGIcZ9UYV1MqUKAAioVZ6lUGdGGpBykCrBQOdaygkqX3GCdaYRRBTgiSjEUkGE06321lSuxdfVauqOwshZ_gHVfQjpfq8aIDJZlRQlUJZOkwkjqFMoS6TL40Mqo4HXfe4U_-dmZ1ouV3blNWF9giAhDWQpgYOGepZxtW2eq_1chEF0koo9EdJGIUyRBdderamPMmYJiignCv4zph0E</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3124826501</pqid></control><display><type>article</type><title>Improved GPT2 Event Extraction Method Based on Mixed Attention Collaborative Layer Vector</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>IEEE Xplore Open Access Journals</source><creator>Jia, Ruchao ; Zhang, Zhenling ; Jia, Yangli ; Papadopoulou, Maria ; Roche, Christophe</creator><creatorcontrib>Jia, Ruchao ; Zhang, Zhenling ; Jia, Yangli ; Papadopoulou, Maria ; Roche, Christophe</creatorcontrib><description>As internet information expands rapidly, extracting valuable event information from unstructured text has become an important research topic. This paper proposes an improved GPT2 model, termed HACLV-GPT2, which is the initial utilization of a GPT-like architecture for the purpose of event extraction. The model utilizes a generative input template and incorporates a hybrid attention mechanism to enhance the understanding of complex contexts. Additionally, the HACLV-GPT2 model employs a layer-vector fusion strategy to optimize the output of Transformer Blocks, effectively boosting prediction performance. The experimental results show that the HACLV-GPT2 model performs excellently in both event argument extraction and event type detection tasks, with F1 values of 0.8020 and 0.9614, respectively, surpassing several baseline models. This outcome fully validates the effectiveness and superiority of the proposed method. Furthermore, ablation experiments confirm the critical role of the hybrid attention mechanism and layer-vector fusion strategy in performance improvement.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2024.3487836</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Ablation ; Accuracy ; Attention ; Attention mechanisms ; Collaboration ; Complexity theory ; Data mining ; Encoding ; event extraction ; GPT2 ; layer vector ; mixed attention ; Predictive models ; Semantics ; Task complexity ; Transformer ; Transformers ; Unstructured data ; Vectors</subject><ispartof>IEEE access, 2024, Vol.12, p.160074-160082</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c289t-f836377c20707ac985ac64de45905c0845993daf1cdb9e3d6d232f0924cc829e3</cites><orcidid>0000-0001-9208-7681 ; 0009-0001-0036-7502 ; 0000-0002-6849-1059 ; 0000-0002-0756-0559</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10737342$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,4010,27610,27900,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Jia, Ruchao</creatorcontrib><creatorcontrib>Zhang, Zhenling</creatorcontrib><creatorcontrib>Jia, Yangli</creatorcontrib><creatorcontrib>Papadopoulou, Maria</creatorcontrib><creatorcontrib>Roche, Christophe</creatorcontrib><title>Improved GPT2 Event Extraction Method Based on Mixed Attention Collaborative Layer Vector</title><title>IEEE access</title><addtitle>Access</addtitle><description>As internet information expands rapidly, extracting valuable event information from unstructured text has become an important research topic. This paper proposes an improved GPT2 model, termed HACLV-GPT2, which is the initial utilization of a GPT-like architecture for the purpose of event extraction. The model utilizes a generative input template and incorporates a hybrid attention mechanism to enhance the understanding of complex contexts. Additionally, the HACLV-GPT2 model employs a layer-vector fusion strategy to optimize the output of Transformer Blocks, effectively boosting prediction performance. The experimental results show that the HACLV-GPT2 model performs excellently in both event argument extraction and event type detection tasks, with F1 values of 0.8020 and 0.9614, respectively, surpassing several baseline models. This outcome fully validates the effectiveness and superiority of the proposed method. Furthermore, ablation experiments confirm the critical role of the hybrid attention mechanism and layer-vector fusion strategy in performance improvement.</description><subject>Ablation</subject><subject>Accuracy</subject><subject>Attention</subject><subject>Attention mechanisms</subject><subject>Collaboration</subject><subject>Complexity theory</subject><subject>Data mining</subject><subject>Encoding</subject><subject>event extraction</subject><subject>GPT2</subject><subject>layer vector</subject><subject>mixed attention</subject><subject>Predictive models</subject><subject>Semantics</subject><subject>Task complexity</subject><subject>Transformer</subject><subject>Transformers</subject><subject>Unstructured data</subject><subject>Vectors</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUV1LwzAULaLgmPsF-lDwuTNfbZLHWeocTBQ2BZ9CmqTa0S0zzcb2703tkOXl3ntyzsklJ4puIRhDCPjDJM-LxWKMACJjTBhlOLuIBghmPMEpzi7P-uto1LYrEA4LUEoH0edsvXV2b3Q8fVuiuNibjY-Lg3dS-dpu4hfjv62OH2UbKN1cH0Iz8T7wuvvcNo0srZO-3pt4Lo_GxR9GeetuoqtKNq0Zneowen8qlvlzMn-dzvLJPFGIcZ9UYV1MqUKAAioVZ6lUGdGGpBykCrBQOdaygkqX3GCdaYRRBTgiSjEUkGE06321lSuxdfVauqOwshZ_gHVfQjpfq8aIDJZlRQlUJZOkwkjqFMoS6TL40Mqo4HXfe4U_-dmZ1ouV3blNWF9giAhDWQpgYOGepZxtW2eq_1chEF0koo9EdJGIUyRBdderamPMmYJiignCv4zph0E</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Jia, Ruchao</creator><creator>Zhang, Zhenling</creator><creator>Jia, Yangli</creator><creator>Papadopoulou, Maria</creator><creator>Roche, Christophe</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-9208-7681</orcidid><orcidid>https://orcid.org/0009-0001-0036-7502</orcidid><orcidid>https://orcid.org/0000-0002-6849-1059</orcidid><orcidid>https://orcid.org/0000-0002-0756-0559</orcidid></search><sort><creationdate>2024</creationdate><title>Improved GPT2 Event Extraction Method Based on Mixed Attention Collaborative Layer Vector</title><author>Jia, Ruchao ; Zhang, Zhenling ; Jia, Yangli ; Papadopoulou, Maria ; Roche, Christophe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c289t-f836377c20707ac985ac64de45905c0845993daf1cdb9e3d6d232f0924cc829e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Ablation</topic><topic>Accuracy</topic><topic>Attention</topic><topic>Attention mechanisms</topic><topic>Collaboration</topic><topic>Complexity theory</topic><topic>Data mining</topic><topic>Encoding</topic><topic>event extraction</topic><topic>GPT2</topic><topic>layer vector</topic><topic>mixed attention</topic><topic>Predictive models</topic><topic>Semantics</topic><topic>Task complexity</topic><topic>Transformer</topic><topic>Transformers</topic><topic>Unstructured data</topic><topic>Vectors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jia, Ruchao</creatorcontrib><creatorcontrib>Zhang, Zhenling</creatorcontrib><creatorcontrib>Jia, Yangli</creatorcontrib><creatorcontrib>Papadopoulou, Maria</creatorcontrib><creatorcontrib>Roche, Christophe</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jia, Ruchao</au><au>Zhang, Zhenling</au><au>Jia, Yangli</au><au>Papadopoulou, Maria</au><au>Roche, Christophe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improved GPT2 Event Extraction Method Based on Mixed Attention Collaborative Layer Vector</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2024</date><risdate>2024</risdate><volume>12</volume><spage>160074</spage><epage>160082</epage><pages>160074-160082</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>As internet information expands rapidly, extracting valuable event information from unstructured text has become an important research topic. This paper proposes an improved GPT2 model, termed HACLV-GPT2, which is the initial utilization of a GPT-like architecture for the purpose of event extraction. The model utilizes a generative input template and incorporates a hybrid attention mechanism to enhance the understanding of complex contexts. Additionally, the HACLV-GPT2 model employs a layer-vector fusion strategy to optimize the output of Transformer Blocks, effectively boosting prediction performance. The experimental results show that the HACLV-GPT2 model performs excellently in both event argument extraction and event type detection tasks, with F1 values of 0.8020 and 0.9614, respectively, surpassing several baseline models. This outcome fully validates the effectiveness and superiority of the proposed method. Furthermore, ablation experiments confirm the critical role of the hybrid attention mechanism and layer-vector fusion strategy in performance improvement.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2024.3487836</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-9208-7681</orcidid><orcidid>https://orcid.org/0009-0001-0036-7502</orcidid><orcidid>https://orcid.org/0000-0002-6849-1059</orcidid><orcidid>https://orcid.org/0000-0002-0756-0559</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2024, Vol.12, p.160074-160082 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_crossref_primary_10_1109_ACCESS_2024_3487836 |
source | DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; IEEE Xplore Open Access Journals |
subjects | Ablation Accuracy Attention Attention mechanisms Collaboration Complexity theory Data mining Encoding event extraction GPT2 layer vector mixed attention Predictive models Semantics Task complexity Transformer Transformers Unstructured data Vectors |
title | Improved GPT2 Event Extraction Method Based on Mixed Attention Collaborative Layer Vector |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T17%3A32%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improved%20GPT2%20Event%20Extraction%20Method%20Based%20on%20Mixed%20Attention%20Collaborative%20Layer%20Vector&rft.jtitle=IEEE%20access&rft.au=Jia,%20Ruchao&rft.date=2024&rft.volume=12&rft.spage=160074&rft.epage=160082&rft.pages=160074-160082&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2024.3487836&rft_dat=%3Cproquest_cross%3E3124826501%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3124826501&rft_id=info:pmid/&rft_ieee_id=10737342&rft_doaj_id=oai_doaj_org_article_61bbf741cb8a4f32ad51ab2db29e7fec&rfr_iscdi=true |