Improved GPT2 Event Extraction Method Based on Mixed Attention Collaborative Layer Vector

As internet information expands rapidly, extracting valuable event information from unstructured text has become an important research topic. This paper proposes an improved GPT2 model, termed HACLV-GPT2, which is the initial utilization of a GPT-like architecture for the purpose of event extraction...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2024, Vol.12, p.160074-160082
Hauptverfasser: Jia, Ruchao, Zhang, Zhenling, Jia, Yangli, Papadopoulou, Maria, Roche, Christophe
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 160082
container_issue
container_start_page 160074
container_title IEEE access
container_volume 12
creator Jia, Ruchao
Zhang, Zhenling
Jia, Yangli
Papadopoulou, Maria
Roche, Christophe
description As internet information expands rapidly, extracting valuable event information from unstructured text has become an important research topic. This paper proposes an improved GPT2 model, termed HACLV-GPT2, which is the initial utilization of a GPT-like architecture for the purpose of event extraction. The model utilizes a generative input template and incorporates a hybrid attention mechanism to enhance the understanding of complex contexts. Additionally, the HACLV-GPT2 model employs a layer-vector fusion strategy to optimize the output of Transformer Blocks, effectively boosting prediction performance. The experimental results show that the HACLV-GPT2 model performs excellently in both event argument extraction and event type detection tasks, with F1 values of 0.8020 and 0.9614, respectively, surpassing several baseline models. This outcome fully validates the effectiveness and superiority of the proposed method. Furthermore, ablation experiments confirm the critical role of the hybrid attention mechanism and layer-vector fusion strategy in performance improvement.
doi_str_mv 10.1109/ACCESS.2024.3487836
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2024_3487836</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10737342</ieee_id><doaj_id>oai_doaj_org_article_61bbf741cb8a4f32ad51ab2db29e7fec</doaj_id><sourcerecordid>3124826501</sourcerecordid><originalsourceid>FETCH-LOGICAL-c289t-f836377c20707ac985ac64de45905c0845993daf1cdb9e3d6d232f0924cc829e3</originalsourceid><addsrcrecordid>eNpNUV1LwzAULaLgmPsF-lDwuTNfbZLHWeocTBQ2BZ9CmqTa0S0zzcb2703tkOXl3ntyzsklJ4puIRhDCPjDJM-LxWKMACJjTBhlOLuIBghmPMEpzi7P-uto1LYrEA4LUEoH0edsvXV2b3Q8fVuiuNibjY-Lg3dS-dpu4hfjv62OH2UbKN1cH0Iz8T7wuvvcNo0srZO-3pt4Lo_GxR9GeetuoqtKNq0Zneowen8qlvlzMn-dzvLJPFGIcZ9UYV1MqUKAAioVZ6lUGdGGpBykCrBQOdaygkqX3GCdaYRRBTgiSjEUkGE06321lSuxdfVauqOwshZ_gHVfQjpfq8aIDJZlRQlUJZOkwkjqFMoS6TL40Mqo4HXfe4U_-dmZ1ouV3blNWF9giAhDWQpgYOGepZxtW2eq_1chEF0koo9EdJGIUyRBdderamPMmYJiignCv4zph0E</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3124826501</pqid></control><display><type>article</type><title>Improved GPT2 Event Extraction Method Based on Mixed Attention Collaborative Layer Vector</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>IEEE Xplore Open Access Journals</source><creator>Jia, Ruchao ; Zhang, Zhenling ; Jia, Yangli ; Papadopoulou, Maria ; Roche, Christophe</creator><creatorcontrib>Jia, Ruchao ; Zhang, Zhenling ; Jia, Yangli ; Papadopoulou, Maria ; Roche, Christophe</creatorcontrib><description>As internet information expands rapidly, extracting valuable event information from unstructured text has become an important research topic. This paper proposes an improved GPT2 model, termed HACLV-GPT2, which is the initial utilization of a GPT-like architecture for the purpose of event extraction. The model utilizes a generative input template and incorporates a hybrid attention mechanism to enhance the understanding of complex contexts. Additionally, the HACLV-GPT2 model employs a layer-vector fusion strategy to optimize the output of Transformer Blocks, effectively boosting prediction performance. The experimental results show that the HACLV-GPT2 model performs excellently in both event argument extraction and event type detection tasks, with F1 values of 0.8020 and 0.9614, respectively, surpassing several baseline models. This outcome fully validates the effectiveness and superiority of the proposed method. Furthermore, ablation experiments confirm the critical role of the hybrid attention mechanism and layer-vector fusion strategy in performance improvement.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2024.3487836</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Ablation ; Accuracy ; Attention ; Attention mechanisms ; Collaboration ; Complexity theory ; Data mining ; Encoding ; event extraction ; GPT2 ; layer vector ; mixed attention ; Predictive models ; Semantics ; Task complexity ; Transformer ; Transformers ; Unstructured data ; Vectors</subject><ispartof>IEEE access, 2024, Vol.12, p.160074-160082</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c289t-f836377c20707ac985ac64de45905c0845993daf1cdb9e3d6d232f0924cc829e3</cites><orcidid>0000-0001-9208-7681 ; 0009-0001-0036-7502 ; 0000-0002-6849-1059 ; 0000-0002-0756-0559</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10737342$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,4010,27610,27900,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Jia, Ruchao</creatorcontrib><creatorcontrib>Zhang, Zhenling</creatorcontrib><creatorcontrib>Jia, Yangli</creatorcontrib><creatorcontrib>Papadopoulou, Maria</creatorcontrib><creatorcontrib>Roche, Christophe</creatorcontrib><title>Improved GPT2 Event Extraction Method Based on Mixed Attention Collaborative Layer Vector</title><title>IEEE access</title><addtitle>Access</addtitle><description>As internet information expands rapidly, extracting valuable event information from unstructured text has become an important research topic. This paper proposes an improved GPT2 model, termed HACLV-GPT2, which is the initial utilization of a GPT-like architecture for the purpose of event extraction. The model utilizes a generative input template and incorporates a hybrid attention mechanism to enhance the understanding of complex contexts. Additionally, the HACLV-GPT2 model employs a layer-vector fusion strategy to optimize the output of Transformer Blocks, effectively boosting prediction performance. The experimental results show that the HACLV-GPT2 model performs excellently in both event argument extraction and event type detection tasks, with F1 values of 0.8020 and 0.9614, respectively, surpassing several baseline models. This outcome fully validates the effectiveness and superiority of the proposed method. Furthermore, ablation experiments confirm the critical role of the hybrid attention mechanism and layer-vector fusion strategy in performance improvement.</description><subject>Ablation</subject><subject>Accuracy</subject><subject>Attention</subject><subject>Attention mechanisms</subject><subject>Collaboration</subject><subject>Complexity theory</subject><subject>Data mining</subject><subject>Encoding</subject><subject>event extraction</subject><subject>GPT2</subject><subject>layer vector</subject><subject>mixed attention</subject><subject>Predictive models</subject><subject>Semantics</subject><subject>Task complexity</subject><subject>Transformer</subject><subject>Transformers</subject><subject>Unstructured data</subject><subject>Vectors</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUV1LwzAULaLgmPsF-lDwuTNfbZLHWeocTBQ2BZ9CmqTa0S0zzcb2703tkOXl3ntyzsklJ4puIRhDCPjDJM-LxWKMACJjTBhlOLuIBghmPMEpzi7P-uto1LYrEA4LUEoH0edsvXV2b3Q8fVuiuNibjY-Lg3dS-dpu4hfjv62OH2UbKN1cH0Iz8T7wuvvcNo0srZO-3pt4Lo_GxR9GeetuoqtKNq0Zneowen8qlvlzMn-dzvLJPFGIcZ9UYV1MqUKAAioVZ6lUGdGGpBykCrBQOdaygkqX3GCdaYRRBTgiSjEUkGE06321lSuxdfVauqOwshZ_gHVfQjpfq8aIDJZlRQlUJZOkwkjqFMoS6TL40Mqo4HXfe4U_-dmZ1ouV3blNWF9giAhDWQpgYOGepZxtW2eq_1chEF0koo9EdJGIUyRBdderamPMmYJiignCv4zph0E</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Jia, Ruchao</creator><creator>Zhang, Zhenling</creator><creator>Jia, Yangli</creator><creator>Papadopoulou, Maria</creator><creator>Roche, Christophe</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-9208-7681</orcidid><orcidid>https://orcid.org/0009-0001-0036-7502</orcidid><orcidid>https://orcid.org/0000-0002-6849-1059</orcidid><orcidid>https://orcid.org/0000-0002-0756-0559</orcidid></search><sort><creationdate>2024</creationdate><title>Improved GPT2 Event Extraction Method Based on Mixed Attention Collaborative Layer Vector</title><author>Jia, Ruchao ; Zhang, Zhenling ; Jia, Yangli ; Papadopoulou, Maria ; Roche, Christophe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c289t-f836377c20707ac985ac64de45905c0845993daf1cdb9e3d6d232f0924cc829e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Ablation</topic><topic>Accuracy</topic><topic>Attention</topic><topic>Attention mechanisms</topic><topic>Collaboration</topic><topic>Complexity theory</topic><topic>Data mining</topic><topic>Encoding</topic><topic>event extraction</topic><topic>GPT2</topic><topic>layer vector</topic><topic>mixed attention</topic><topic>Predictive models</topic><topic>Semantics</topic><topic>Task complexity</topic><topic>Transformer</topic><topic>Transformers</topic><topic>Unstructured data</topic><topic>Vectors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jia, Ruchao</creatorcontrib><creatorcontrib>Zhang, Zhenling</creatorcontrib><creatorcontrib>Jia, Yangli</creatorcontrib><creatorcontrib>Papadopoulou, Maria</creatorcontrib><creatorcontrib>Roche, Christophe</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jia, Ruchao</au><au>Zhang, Zhenling</au><au>Jia, Yangli</au><au>Papadopoulou, Maria</au><au>Roche, Christophe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improved GPT2 Event Extraction Method Based on Mixed Attention Collaborative Layer Vector</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2024</date><risdate>2024</risdate><volume>12</volume><spage>160074</spage><epage>160082</epage><pages>160074-160082</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>As internet information expands rapidly, extracting valuable event information from unstructured text has become an important research topic. This paper proposes an improved GPT2 model, termed HACLV-GPT2, which is the initial utilization of a GPT-like architecture for the purpose of event extraction. The model utilizes a generative input template and incorporates a hybrid attention mechanism to enhance the understanding of complex contexts. Additionally, the HACLV-GPT2 model employs a layer-vector fusion strategy to optimize the output of Transformer Blocks, effectively boosting prediction performance. The experimental results show that the HACLV-GPT2 model performs excellently in both event argument extraction and event type detection tasks, with F1 values of 0.8020 and 0.9614, respectively, surpassing several baseline models. This outcome fully validates the effectiveness and superiority of the proposed method. Furthermore, ablation experiments confirm the critical role of the hybrid attention mechanism and layer-vector fusion strategy in performance improvement.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2024.3487836</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-9208-7681</orcidid><orcidid>https://orcid.org/0009-0001-0036-7502</orcidid><orcidid>https://orcid.org/0000-0002-6849-1059</orcidid><orcidid>https://orcid.org/0000-0002-0756-0559</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2024, Vol.12, p.160074-160082
issn 2169-3536
2169-3536
language eng
recordid cdi_crossref_primary_10_1109_ACCESS_2024_3487836
source DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; IEEE Xplore Open Access Journals
subjects Ablation
Accuracy
Attention
Attention mechanisms
Collaboration
Complexity theory
Data mining
Encoding
event extraction
GPT2
layer vector
mixed attention
Predictive models
Semantics
Task complexity
Transformer
Transformers
Unstructured data
Vectors
title Improved GPT2 Event Extraction Method Based on Mixed Attention Collaborative Layer Vector
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T17%3A32%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improved%20GPT2%20Event%20Extraction%20Method%20Based%20on%20Mixed%20Attention%20Collaborative%20Layer%20Vector&rft.jtitle=IEEE%20access&rft.au=Jia,%20Ruchao&rft.date=2024&rft.volume=12&rft.spage=160074&rft.epage=160082&rft.pages=160074-160082&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2024.3487836&rft_dat=%3Cproquest_cross%3E3124826501%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3124826501&rft_id=info:pmid/&rft_ieee_id=10737342&rft_doaj_id=oai_doaj_org_article_61bbf741cb8a4f32ad51ab2db29e7fec&rfr_iscdi=true