Improved LightGBM for Extremely Imbalanced Data and Application to Credit Card Fraud Detection

Credit card fraud (CCF) is a significant threat to cardholders and financial institutions. CCF detection against this threat is challenging due to extremely imbalanced data (EID). EID involves extremely few instances of fraud for training and an extremely high risk of overlooking fraud. While class...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2024, Vol.12, p.159316-159335
Hauptverfasser: Zhao, Xiaosong, Liu, Yong, Zhao, Qiangfu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 159335
container_issue
container_start_page 159316
container_title IEEE access
container_volume 12
creator Zhao, Xiaosong
Liu, Yong
Zhao, Qiangfu
description Credit card fraud (CCF) is a significant threat to cardholders and financial institutions. CCF detection against this threat is challenging due to extremely imbalanced data (EID). EID involves extremely few instances of fraud for training and an extremely high risk of overlooking fraud. While class balancing or oversampling techniques can address the former problem by punishing negative classes or augmenting the positive data, they do not mitigate the latter. In contrast, the cost-sensitive learning approach targets only the high risk of false negative errors. Therefore, existing approaches are insufficient to solve all the issues of the EID problem. Based on the LightGBM (Light Gradient Boosting Machine) framework, this study introduces two novel machine-learning methods: the class balancing cost-harmonization LightGBM (CB-CHL-LightGBM) and the oversampling cost-harmonization LightGBM (OS-CHL-LightGBM). The new approaches combine class balancing or oversampling technology with LightGBM to solve the EID problem comprehensively. They enhance the efficacy of LightGBM in CCF detection scenarios. Experimental results on three CCF datasets indicate that the two proposed methods outperform LightGBM in several crucial performance metrics. For example, compared with the original LightGBM, CB-CHL-LightGBM or OS-CHL-LightGBM can increase the F2-score from 0.77 to 0.83 for the first dataset, from 0.77 to 0.86 for the second dataset, and from 0.70 to 0.82 for the third dataset. However, adding class balancing, oversampling, and cost-harmonization loss separately to LightGBM may not obtain better results.
doi_str_mv 10.1109/ACCESS.2024.3487212
format Article
fullrecord <record><control><sourceid>doaj_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2024_3487212</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10737073</ieee_id><doaj_id>oai_doaj_org_article_2e03618967114c458023b8752332785f</doaj_id><sourcerecordid>oai_doaj_org_article_2e03618967114c458023b8752332785f</sourcerecordid><originalsourceid>FETCH-LOGICAL-c216t-f1b3e2939a0bc4d15c1d487350dc2e46c941f482d941bb78368382cdbba28503</originalsourceid><addsrcrecordid>eNpNUMFOwzAMjRBITLAvgEN-oCOJ2yY9jrKNSkMctjNRmqSjU7tWaUDs78nohGbJsvXs92Q_hB4omVFKsqd5ni82mxkjLJ5BLDij7ApNGE2zCBJIry_6WzQdhj0JIQKU8An6KNredd_W4HW9-_Sr5zdcdQ4vfryzrW2OuGhL1aiDDhsvyiusDgbP-76ptfJ1d8C-w7mzpvY4V87gpVNfYdN6q0_je3RTqWaw03O9Q9vlYpu_Ruv3VZHP15EOt_mooiVYlkGmSKljQxNNTfgEEmI0s3Gqs5hWsWAm1LLkAlIBgmlTloqJhMAdKkZZ06m97F3dKneUnarlH9C5nVTO17qxklkCKRVZyimNdZwIwqAUPGEAjIukClowamnXDYOz1b8eJfJkuBwNlyfD5dnwwHocWbW19oLBgYeEXyPnek0</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Improved LightGBM for Extremely Imbalanced Data and Application to Credit Card Fraud Detection</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Zhao, Xiaosong ; Liu, Yong ; Zhao, Qiangfu</creator><creatorcontrib>Zhao, Xiaosong ; Liu, Yong ; Zhao, Qiangfu</creatorcontrib><description>Credit card fraud (CCF) is a significant threat to cardholders and financial institutions. CCF detection against this threat is challenging due to extremely imbalanced data (EID). EID involves extremely few instances of fraud for training and an extremely high risk of overlooking fraud. While class balancing or oversampling techniques can address the former problem by punishing negative classes or augmenting the positive data, they do not mitigate the latter. In contrast, the cost-sensitive learning approach targets only the high risk of false negative errors. Therefore, existing approaches are insufficient to solve all the issues of the EID problem. Based on the LightGBM (Light Gradient Boosting Machine) framework, this study introduces two novel machine-learning methods: the class balancing cost-harmonization LightGBM (CB-CHL-LightGBM) and the oversampling cost-harmonization LightGBM (OS-CHL-LightGBM). The new approaches combine class balancing or oversampling technology with LightGBM to solve the EID problem comprehensively. They enhance the efficacy of LightGBM in CCF detection scenarios. Experimental results on three CCF datasets indicate that the two proposed methods outperform LightGBM in several crucial performance metrics. For example, compared with the original LightGBM, CB-CHL-LightGBM or OS-CHL-LightGBM can increase the F2-score from 0.77 to 0.83 for the first dataset, from 0.77 to 0.86 for the second dataset, and from 0.70 to 0.82 for the third dataset. However, adding class balancing, oversampling, and cost-harmonization loss separately to LightGBM may not obtain better results.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2024.3487212</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accuracy ; Boosting ; Class balancing cost-harmonization LightGBM ; Classification algorithms ; cost-sensitive ; Costs ; credit card fraud detection ; Credit cards ; Data models ; extremely imbalanced data ; Fraud ; interpretability ; Loss measurement ; oversampling ; Synthetic data ; Training</subject><ispartof>IEEE access, 2024, Vol.12, p.159316-159335</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c216t-f1b3e2939a0bc4d15c1d487350dc2e46c941f482d941bb78368382cdbba28503</cites><orcidid>0000-0002-7146-254X ; 0000-0002-4663-6739 ; 0000-0003-3101-749X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10737073$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2100,4022,27632,27922,27923,27924,54932</link.rule.ids></links><search><creatorcontrib>Zhao, Xiaosong</creatorcontrib><creatorcontrib>Liu, Yong</creatorcontrib><creatorcontrib>Zhao, Qiangfu</creatorcontrib><title>Improved LightGBM for Extremely Imbalanced Data and Application to Credit Card Fraud Detection</title><title>IEEE access</title><addtitle>Access</addtitle><description>Credit card fraud (CCF) is a significant threat to cardholders and financial institutions. CCF detection against this threat is challenging due to extremely imbalanced data (EID). EID involves extremely few instances of fraud for training and an extremely high risk of overlooking fraud. While class balancing or oversampling techniques can address the former problem by punishing negative classes or augmenting the positive data, they do not mitigate the latter. In contrast, the cost-sensitive learning approach targets only the high risk of false negative errors. Therefore, existing approaches are insufficient to solve all the issues of the EID problem. Based on the LightGBM (Light Gradient Boosting Machine) framework, this study introduces two novel machine-learning methods: the class balancing cost-harmonization LightGBM (CB-CHL-LightGBM) and the oversampling cost-harmonization LightGBM (OS-CHL-LightGBM). The new approaches combine class balancing or oversampling technology with LightGBM to solve the EID problem comprehensively. They enhance the efficacy of LightGBM in CCF detection scenarios. Experimental results on three CCF datasets indicate that the two proposed methods outperform LightGBM in several crucial performance metrics. For example, compared with the original LightGBM, CB-CHL-LightGBM or OS-CHL-LightGBM can increase the F2-score from 0.77 to 0.83 for the first dataset, from 0.77 to 0.86 for the second dataset, and from 0.70 to 0.82 for the third dataset. However, adding class balancing, oversampling, and cost-harmonization loss separately to LightGBM may not obtain better results.</description><subject>Accuracy</subject><subject>Boosting</subject><subject>Class balancing cost-harmonization LightGBM</subject><subject>Classification algorithms</subject><subject>cost-sensitive</subject><subject>Costs</subject><subject>credit card fraud detection</subject><subject>Credit cards</subject><subject>Data models</subject><subject>extremely imbalanced data</subject><subject>Fraud</subject><subject>interpretability</subject><subject>Loss measurement</subject><subject>oversampling</subject><subject>Synthetic data</subject><subject>Training</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUMFOwzAMjRBITLAvgEN-oCOJ2yY9jrKNSkMctjNRmqSjU7tWaUDs78nohGbJsvXs92Q_hB4omVFKsqd5ni82mxkjLJ5BLDij7ApNGE2zCBJIry_6WzQdhj0JIQKU8An6KNredd_W4HW9-_Sr5zdcdQ4vfryzrW2OuGhL1aiDDhsvyiusDgbP-76ptfJ1d8C-w7mzpvY4V87gpVNfYdN6q0_je3RTqWaw03O9Q9vlYpu_Ruv3VZHP15EOt_mooiVYlkGmSKljQxNNTfgEEmI0s3Gqs5hWsWAm1LLkAlIBgmlTloqJhMAdKkZZ06m97F3dKneUnarlH9C5nVTO17qxklkCKRVZyimNdZwIwqAUPGEAjIukClowamnXDYOz1b8eJfJkuBwNlyfD5dnwwHocWbW19oLBgYeEXyPnek0</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Zhao, Xiaosong</creator><creator>Liu, Yong</creator><creator>Zhao, Qiangfu</creator><general>IEEE</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-7146-254X</orcidid><orcidid>https://orcid.org/0000-0002-4663-6739</orcidid><orcidid>https://orcid.org/0000-0003-3101-749X</orcidid></search><sort><creationdate>2024</creationdate><title>Improved LightGBM for Extremely Imbalanced Data and Application to Credit Card Fraud Detection</title><author>Zhao, Xiaosong ; Liu, Yong ; Zhao, Qiangfu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c216t-f1b3e2939a0bc4d15c1d487350dc2e46c941f482d941bb78368382cdbba28503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Boosting</topic><topic>Class balancing cost-harmonization LightGBM</topic><topic>Classification algorithms</topic><topic>cost-sensitive</topic><topic>Costs</topic><topic>credit card fraud detection</topic><topic>Credit cards</topic><topic>Data models</topic><topic>extremely imbalanced data</topic><topic>Fraud</topic><topic>interpretability</topic><topic>Loss measurement</topic><topic>oversampling</topic><topic>Synthetic data</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Xiaosong</creatorcontrib><creatorcontrib>Liu, Yong</creatorcontrib><creatorcontrib>Zhao, Qiangfu</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Xiaosong</au><au>Liu, Yong</au><au>Zhao, Qiangfu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improved LightGBM for Extremely Imbalanced Data and Application to Credit Card Fraud Detection</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2024</date><risdate>2024</risdate><volume>12</volume><spage>159316</spage><epage>159335</epage><pages>159316-159335</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Credit card fraud (CCF) is a significant threat to cardholders and financial institutions. CCF detection against this threat is challenging due to extremely imbalanced data (EID). EID involves extremely few instances of fraud for training and an extremely high risk of overlooking fraud. While class balancing or oversampling techniques can address the former problem by punishing negative classes or augmenting the positive data, they do not mitigate the latter. In contrast, the cost-sensitive learning approach targets only the high risk of false negative errors. Therefore, existing approaches are insufficient to solve all the issues of the EID problem. Based on the LightGBM (Light Gradient Boosting Machine) framework, this study introduces two novel machine-learning methods: the class balancing cost-harmonization LightGBM (CB-CHL-LightGBM) and the oversampling cost-harmonization LightGBM (OS-CHL-LightGBM). The new approaches combine class balancing or oversampling technology with LightGBM to solve the EID problem comprehensively. They enhance the efficacy of LightGBM in CCF detection scenarios. Experimental results on three CCF datasets indicate that the two proposed methods outperform LightGBM in several crucial performance metrics. For example, compared with the original LightGBM, CB-CHL-LightGBM or OS-CHL-LightGBM can increase the F2-score from 0.77 to 0.83 for the first dataset, from 0.77 to 0.86 for the second dataset, and from 0.70 to 0.82 for the third dataset. However, adding class balancing, oversampling, and cost-harmonization loss separately to LightGBM may not obtain better results.</abstract><pub>IEEE</pub><doi>10.1109/ACCESS.2024.3487212</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0002-7146-254X</orcidid><orcidid>https://orcid.org/0000-0002-4663-6739</orcidid><orcidid>https://orcid.org/0000-0003-3101-749X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2024, Vol.12, p.159316-159335
issn 2169-3536
2169-3536
language eng
recordid cdi_crossref_primary_10_1109_ACCESS_2024_3487212
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Accuracy
Boosting
Class balancing cost-harmonization LightGBM
Classification algorithms
cost-sensitive
Costs
credit card fraud detection
Credit cards
Data models
extremely imbalanced data
Fraud
interpretability
Loss measurement
oversampling
Synthetic data
Training
title Improved LightGBM for Extremely Imbalanced Data and Application to Credit Card Fraud Detection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T19%3A54%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-doaj_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improved%20LightGBM%20for%20Extremely%20Imbalanced%20Data%20and%20Application%20to%20Credit%20Card%20Fraud%20Detection&rft.jtitle=IEEE%20access&rft.au=Zhao,%20Xiaosong&rft.date=2024&rft.volume=12&rft.spage=159316&rft.epage=159335&rft.pages=159316-159335&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2024.3487212&rft_dat=%3Cdoaj_cross%3Eoai_doaj_org_article_2e03618967114c458023b8752332785f%3C/doaj_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10737073&rft_doaj_id=oai_doaj_org_article_2e03618967114c458023b8752332785f&rfr_iscdi=true