ACPP-Net: Enhancing Strip Steel Surface Defect Detection with Efficient Adaptive Convolution and Channel-Spatial Pyramid Pooling
As an indispensable material in modern industry, steel requires real-time surface defect detection to ensure high-quality manufacturing. However, steel surface defects present significant challenges due to their tiny size, diverse morphology, and uneven feature distribution. To address these challen...
Gespeichert in:
Veröffentlicht in: | IEEE access 2024-01, Vol.12, p.1-1 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE access |
container_volume | 12 |
creator | Li, Rongyi Hou, Kailin Zhu, Meiwen Dai, Qiuming Ni, Jun Liu, Xianli Li, Xinyu |
description | As an indispensable material in modern industry, steel requires real-time surface defect detection to ensure high-quality manufacturing. However, steel surface defects present significant challenges due to their tiny size, diverse morphology, and uneven feature distribution. To address these challenges and satisfy the balance between accuracy and detection speed, an efficient steel strip surface defect detection network, ACPP-Net, is proposed in this study. Firstly, adaptive ghost convolution, the LM-block, is introduced to meet the need for rapid steel defect detection. By integrating adaptive ghost convolution, this module increases efficiency by reducing redundant information acquisition and adaptively assigning weights to defect features. Secondly, a novel feature enhancement module, FEM-block, is proposed to address the complexity of steel defects and distinguish their subtle differences. This module excels at capturing complex defect textures, aiding in the accurate differentiation of various defects. Additionally, a channel spatial pyramid pooling (CSPP) module is incorporated into the final part of the backbone network. This module effectively helps the network understand the characteristics and distribution of steel defects. Extensive experiments on the NEU-DET and GC10-DET datasets demonstrate ACPP-Net's superior performance, achieving 82.1% and 71.1% mAP respectively, while maintaining real-time detection capabilities. The detection performance of this model is superior to other methods. These results demonstrate the model's high accuracy and real-time detection capabilities, thus contributing to efficient and high-quality steel detection processes. |
doi_str_mv | 10.1109/ACCESS.2024.3481031 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2024_3481031</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10718289</ieee_id><doaj_id>oai_doaj_org_article_7167f2635a514a2f8d58e86e9a0a855b</doaj_id><sourcerecordid>3119787361</sourcerecordid><originalsourceid>FETCH-LOGICAL-c289t-52ee30fd976e48df3c72ea9cbe962af2923360ca7da9eb95d19b3221d2c202f93</originalsourceid><addsrcrecordid>eNpNUU1r3DAQNaGBhjS_oD0IevbWktb6yG1xt20gtAtOz2JWGiVaHMuVtQm59adXiUPJHOaJ4b03Yl5VfaTNitJGf9l03bbvV6xh6xVfK9pwelKdMSp0zVsu3r15v68u5vnQlFJl1Mqz6u-m2-3qn5gvyXa8g9GG8Zb0OYWpdMSB9MfkwSL5ih5tLpALhDiSx5DvyNb7YAOOmWwcTDk8IOni-BCH4wsHRke64jriUPcT5AAD2T0luA-O7GIcyrIP1amHYcaLVzyvfn_b3nQ_6utf36-6zXVtmdK5bhkib7zTUuBaOc-tZAja7lELBp5pxrloLEgHGve6dVTvOWPUMVsO4zU_r64WXxfhYKYU7iE9mQjBvAxiujWQcrADGkmF9EzwFlq6BuaVaxUqgRoaUG27L16fF68pxT9HnLM5xGMay_cNp1RLJbmghcUXlk1xnhP6_1tpY56TM0ty5jk585pcUX1aVAER3ygkVeUQ_B8zL5TX</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3119787361</pqid></control><display><type>article</type><title>ACPP-Net: Enhancing Strip Steel Surface Defect Detection with Efficient Adaptive Convolution and Channel-Spatial Pyramid Pooling</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Li, Rongyi ; Hou, Kailin ; Zhu, Meiwen ; Dai, Qiuming ; Ni, Jun ; Liu, Xianli ; Li, Xinyu</creator><creatorcontrib>Li, Rongyi ; Hou, Kailin ; Zhu, Meiwen ; Dai, Qiuming ; Ni, Jun ; Liu, Xianli ; Li, Xinyu</creatorcontrib><description>As an indispensable material in modern industry, steel requires real-time surface defect detection to ensure high-quality manufacturing. However, steel surface defects present significant challenges due to their tiny size, diverse morphology, and uneven feature distribution. To address these challenges and satisfy the balance between accuracy and detection speed, an efficient steel strip surface defect detection network, ACPP-Net, is proposed in this study. Firstly, adaptive ghost convolution, the LM-block, is introduced to meet the need for rapid steel defect detection. By integrating adaptive ghost convolution, this module increases efficiency by reducing redundant information acquisition and adaptively assigning weights to defect features. Secondly, a novel feature enhancement module, FEM-block, is proposed to address the complexity of steel defects and distinguish their subtle differences. This module excels at capturing complex defect textures, aiding in the accurate differentiation of various defects. Additionally, a channel spatial pyramid pooling (CSPP) module is incorporated into the final part of the backbone network. This module effectively helps the network understand the characteristics and distribution of steel defects. Extensive experiments on the NEU-DET and GC10-DET datasets demonstrate ACPP-Net's superior performance, achieving 82.1% and 71.1% mAP respectively, while maintaining real-time detection capabilities. The detection performance of this model is superior to other methods. These results demonstrate the model's high accuracy and real-time detection capabilities, thus contributing to efficient and high-quality steel detection processes.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2024.3481031</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Accuracy ; Adaptation models ; Adaptive systems ; Attention Mechanism ; Attention mechanisms ; Complexity ; Computer Vision ; Convolution ; Convolutional neural networks ; Data processing ; Deep learning ; Defect detection ; Defects ; Feature extraction ; Ghost Convolution ; Machine learning algorithms ; Metal strips ; Modules ; Real time ; Steel ; Strip steel ; Surface Defect Detection ; Surface defects ; Transformers</subject><ispartof>IEEE access, 2024-01, Vol.12, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c289t-52ee30fd976e48df3c72ea9cbe962af2923360ca7da9eb95d19b3221d2c202f93</cites><orcidid>0009-0001-0896-5355</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10718289$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,27610,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Li, Rongyi</creatorcontrib><creatorcontrib>Hou, Kailin</creatorcontrib><creatorcontrib>Zhu, Meiwen</creatorcontrib><creatorcontrib>Dai, Qiuming</creatorcontrib><creatorcontrib>Ni, Jun</creatorcontrib><creatorcontrib>Liu, Xianli</creatorcontrib><creatorcontrib>Li, Xinyu</creatorcontrib><title>ACPP-Net: Enhancing Strip Steel Surface Defect Detection with Efficient Adaptive Convolution and Channel-Spatial Pyramid Pooling</title><title>IEEE access</title><addtitle>Access</addtitle><description>As an indispensable material in modern industry, steel requires real-time surface defect detection to ensure high-quality manufacturing. However, steel surface defects present significant challenges due to their tiny size, diverse morphology, and uneven feature distribution. To address these challenges and satisfy the balance between accuracy and detection speed, an efficient steel strip surface defect detection network, ACPP-Net, is proposed in this study. Firstly, adaptive ghost convolution, the LM-block, is introduced to meet the need for rapid steel defect detection. By integrating adaptive ghost convolution, this module increases efficiency by reducing redundant information acquisition and adaptively assigning weights to defect features. Secondly, a novel feature enhancement module, FEM-block, is proposed to address the complexity of steel defects and distinguish their subtle differences. This module excels at capturing complex defect textures, aiding in the accurate differentiation of various defects. Additionally, a channel spatial pyramid pooling (CSPP) module is incorporated into the final part of the backbone network. This module effectively helps the network understand the characteristics and distribution of steel defects. Extensive experiments on the NEU-DET and GC10-DET datasets demonstrate ACPP-Net's superior performance, achieving 82.1% and 71.1% mAP respectively, while maintaining real-time detection capabilities. The detection performance of this model is superior to other methods. These results demonstrate the model's high accuracy and real-time detection capabilities, thus contributing to efficient and high-quality steel detection processes.</description><subject>Accuracy</subject><subject>Adaptation models</subject><subject>Adaptive systems</subject><subject>Attention Mechanism</subject><subject>Attention mechanisms</subject><subject>Complexity</subject><subject>Computer Vision</subject><subject>Convolution</subject><subject>Convolutional neural networks</subject><subject>Data processing</subject><subject>Deep learning</subject><subject>Defect detection</subject><subject>Defects</subject><subject>Feature extraction</subject><subject>Ghost Convolution</subject><subject>Machine learning algorithms</subject><subject>Metal strips</subject><subject>Modules</subject><subject>Real time</subject><subject>Steel</subject><subject>Strip steel</subject><subject>Surface Defect Detection</subject><subject>Surface defects</subject><subject>Transformers</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1r3DAQNaGBhjS_oD0IevbWktb6yG1xt20gtAtOz2JWGiVaHMuVtQm59adXiUPJHOaJ4b03Yl5VfaTNitJGf9l03bbvV6xh6xVfK9pwelKdMSp0zVsu3r15v68u5vnQlFJl1Mqz6u-m2-3qn5gvyXa8g9GG8Zb0OYWpdMSB9MfkwSL5ih5tLpALhDiSx5DvyNb7YAOOmWwcTDk8IOni-BCH4wsHRke64jriUPcT5AAD2T0luA-O7GIcyrIP1amHYcaLVzyvfn_b3nQ_6utf36-6zXVtmdK5bhkib7zTUuBaOc-tZAja7lELBp5pxrloLEgHGve6dVTvOWPUMVsO4zU_r64WXxfhYKYU7iE9mQjBvAxiujWQcrADGkmF9EzwFlq6BuaVaxUqgRoaUG27L16fF68pxT9HnLM5xGMay_cNp1RLJbmghcUXlk1xnhP6_1tpY56TM0ty5jk585pcUX1aVAER3ygkVeUQ_B8zL5TX</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>Li, Rongyi</creator><creator>Hou, Kailin</creator><creator>Zhu, Meiwen</creator><creator>Dai, Qiuming</creator><creator>Ni, Jun</creator><creator>Liu, Xianli</creator><creator>Li, Xinyu</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0009-0001-0896-5355</orcidid></search><sort><creationdate>20240101</creationdate><title>ACPP-Net: Enhancing Strip Steel Surface Defect Detection with Efficient Adaptive Convolution and Channel-Spatial Pyramid Pooling</title><author>Li, Rongyi ; Hou, Kailin ; Zhu, Meiwen ; Dai, Qiuming ; Ni, Jun ; Liu, Xianli ; Li, Xinyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c289t-52ee30fd976e48df3c72ea9cbe962af2923360ca7da9eb95d19b3221d2c202f93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Adaptation models</topic><topic>Adaptive systems</topic><topic>Attention Mechanism</topic><topic>Attention mechanisms</topic><topic>Complexity</topic><topic>Computer Vision</topic><topic>Convolution</topic><topic>Convolutional neural networks</topic><topic>Data processing</topic><topic>Deep learning</topic><topic>Defect detection</topic><topic>Defects</topic><topic>Feature extraction</topic><topic>Ghost Convolution</topic><topic>Machine learning algorithms</topic><topic>Metal strips</topic><topic>Modules</topic><topic>Real time</topic><topic>Steel</topic><topic>Strip steel</topic><topic>Surface Defect Detection</topic><topic>Surface defects</topic><topic>Transformers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Rongyi</creatorcontrib><creatorcontrib>Hou, Kailin</creatorcontrib><creatorcontrib>Zhu, Meiwen</creatorcontrib><creatorcontrib>Dai, Qiuming</creatorcontrib><creatorcontrib>Ni, Jun</creatorcontrib><creatorcontrib>Liu, Xianli</creatorcontrib><creatorcontrib>Li, Xinyu</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Rongyi</au><au>Hou, Kailin</au><au>Zhu, Meiwen</au><au>Dai, Qiuming</au><au>Ni, Jun</au><au>Liu, Xianli</au><au>Li, Xinyu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ACPP-Net: Enhancing Strip Steel Surface Defect Detection with Efficient Adaptive Convolution and Channel-Spatial Pyramid Pooling</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2024-01-01</date><risdate>2024</risdate><volume>12</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>As an indispensable material in modern industry, steel requires real-time surface defect detection to ensure high-quality manufacturing. However, steel surface defects present significant challenges due to their tiny size, diverse morphology, and uneven feature distribution. To address these challenges and satisfy the balance between accuracy and detection speed, an efficient steel strip surface defect detection network, ACPP-Net, is proposed in this study. Firstly, adaptive ghost convolution, the LM-block, is introduced to meet the need for rapid steel defect detection. By integrating adaptive ghost convolution, this module increases efficiency by reducing redundant information acquisition and adaptively assigning weights to defect features. Secondly, a novel feature enhancement module, FEM-block, is proposed to address the complexity of steel defects and distinguish their subtle differences. This module excels at capturing complex defect textures, aiding in the accurate differentiation of various defects. Additionally, a channel spatial pyramid pooling (CSPP) module is incorporated into the final part of the backbone network. This module effectively helps the network understand the characteristics and distribution of steel defects. Extensive experiments on the NEU-DET and GC10-DET datasets demonstrate ACPP-Net's superior performance, achieving 82.1% and 71.1% mAP respectively, while maintaining real-time detection capabilities. The detection performance of this model is superior to other methods. These results demonstrate the model's high accuracy and real-time detection capabilities, thus contributing to efficient and high-quality steel detection processes.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2024.3481031</doi><tpages>1</tpages><orcidid>https://orcid.org/0009-0001-0896-5355</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2024-01, Vol.12, p.1-1 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_crossref_primary_10_1109_ACCESS_2024_3481031 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Accuracy Adaptation models Adaptive systems Attention Mechanism Attention mechanisms Complexity Computer Vision Convolution Convolutional neural networks Data processing Deep learning Defect detection Defects Feature extraction Ghost Convolution Machine learning algorithms Metal strips Modules Real time Steel Strip steel Surface Defect Detection Surface defects Transformers |
title | ACPP-Net: Enhancing Strip Steel Surface Defect Detection with Efficient Adaptive Convolution and Channel-Spatial Pyramid Pooling |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T07%3A28%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ACPP-Net:%20Enhancing%20Strip%20Steel%20Surface%20Defect%20Detection%20with%20Efficient%20Adaptive%20Convolution%20and%20Channel-Spatial%20Pyramid%20Pooling&rft.jtitle=IEEE%20access&rft.au=Li,%20Rongyi&rft.date=2024-01-01&rft.volume=12&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2024.3481031&rft_dat=%3Cproquest_cross%3E3119787361%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3119787361&rft_id=info:pmid/&rft_ieee_id=10718289&rft_doaj_id=oai_doaj_org_article_7167f2635a514a2f8d58e86e9a0a855b&rfr_iscdi=true |