Constructing Highly Nonlinear Cryptographic Balanced Boolean Functions on Learning Capabilities of Recurrent Neural Networks

This study presents a novel approach to cryptographic algorithm design that harnesses the power of recurrent neural networks. Unlike traditional mathematical-based methods, neural networks offer nonlinear models that excel at capturing chaotic behavior within systems. We employ a recurrent neural ne...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2024, Vol.12, p.150255-150267
Hauptverfasser: Muhammad Waseem, Hafiz, Asfand Hafeez, Muhammad, Ahmad, Shabir, David Deebak, Bakkiam, Munir, Noor, Majeed, Abdul, Oun Hwang, Seoung
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!